880 resultados para reperfusion injury


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background:Acute myocardial infarction is the leading cause of morbidity and mortality worldwide. Furthermore, research has shown that exercise, in addition to reducing cardiovascular risk factors, can also protect the heart against injury due to ischemia and reperfusion through a direct effect on the myocardium. However, the specific mechanism involved in exerciseinduced cardiac preconditioning is still under debate.Objective:To perform a systematic review of the studies that have addressed the mechanisms by which aerobic exercise promotes direct cardioprotection against ischemia and reperfusion injury.Methods:A search was conducted using MEDLINE, Literatura Latino-Americana e do Caribe de Informação em Ciências da Saúde, and Scientific Electronic Library Online databases. Data were extracted in a standardized manner by two independent researchers, who were responsible for assessing the methodological quality of the studies.Results:The search retrieved 78 studies; after evaluating the abstracts, 30 studies were excluded. The manuscripts of the remaining 48 studies were completely read and, of these, 20 were excluded. Finally, 28 studies were included in this systematic review.Conclusion:On the basis of the selected studies, the following are potentially involved in the cardioprotective response to exercise: increased heat shock protein production, nitric oxide pathway involvement, increased cardiac antioxidant capacity, improvement in ATP-dependent potassium channel function, and opioid system activation. Despite all the previous investigations, further research is still necessary to obtain more consistent conclusions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L-Type Ca(2+) and K(ATP) Channels in Pacing-Induced Cardioprotection. AIMS: The L-type Ca(2+) channel, the sarcolemmal (sarcK(ATP)), and mitochondrial K(ATP) (mitoK(ATP)) channels are involved in myocardial preconditioning. We aimed at determining to what extent these channels can also participate in pacing-induced cardioprotection. METHODS: Hearts of 4-day-old chick embryos were paced in ovo during 12 hour using asynchronous intermittent ventricular stimulation at 110% of the intrinsic rate. Sham operated and paced hearts were then submitted in vitro to anoxia (30 minutes) and reoxygenation (60 minutes). These hearts were exposed to L-type Ca(2+) channel agonist Bay-K-8644 (BAY-K) or blocker verapamil, nonselective K(ATP) channel antagonist glibenclamide (GLIB), mitoK(ATP) channel agonist diazoxide (DIAZO), or antagonist 5-hydroxydecanoate. Electrocardiogram, electromechanical delay (EMD) reflecting excitation-contraction (E-C) coupling, and contractility were determined. RESULTS: Under normoxia, heart rate, QT duration, conduction, EMD, and ventricular shortening were similar in sham and paced hearts. During reoxygenation, arrhythmias ceased earlier and ventricular EMD recovered faster in paced hearts than in sham hearts. In sham hearts, BAY-K (but not verapamil), DIAZO (but not 5-hydroxydecanoate) or GLIB accelerated recovery of ventricular EMD, reproducing the pacing-induced protection. By contrast, none of these agents further ameliorated recovery of the paced hearts. CONCLUSION: The protective effect of chronic asynchronous pacing at near physiological rate on ventricular E-C coupling appears to be associated with subtle activation of L-type Ca(2+) channel, inhibition of sarcK(ATP) channel, and/or opening of mitoK(ATP) channel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clinically and experimentally, a case for omega-3 polyunsaturated fatty acid (PUFA) cardioprotection in females has not been clearly established. The goal of this study was to investigate whether dietary omega-3 PUFA supplementation could provide ischemic protection in female mice with an underlying genetic predisposition to cardiac hypertrophy. Mature female transgenic mice (TG) with cardiac-specific overexpression of angiotensinogen that develop normotensive cardiac hypertrophy and littermate wild-type (WT) mice were fed a fish oil-derived diet (FO) or PUFA-matched control diet (CTR) for 4 wk. Myocardial membrane lipids, ex vivo cardiac performance (intraventricular balloon) after global no-flow ischemia and reperfusion (15/30 min), and reperfusion arrhythmia incidence were assessed. FO diet suppressed cardiac growth by 5% and 10% in WT and TG, respectively (P < 0.001). The extent of mechanical recovery [rate-pressure product (RPP) = beats/min x mmHg] of FO-fed WT and TG hearts was similar (50 +/- 7% vs. 45 +/- 12%, 30 min reperfusion), and this was not significantly different from CTR-fed WT or TG. To evaluate whether systemic estrogen was masking a protective effect of the FO diet, the responses of ovariectomized (OVX) WT and TG mice to FO dietary intervention were assessed. The extent of mechanical recovery of FO-fed OVX WT and TG (RPP, 50 +/- 4% vs. 64 +/- 8%) was not enhanced compared with CTR-fed mice (RPP, 60 +/- 11% vs. 80 +/- 8%, P = 0.335). Dietary FO did not suppress the incidence of reperfusion arrhythmias in WT or TG hearts (ovary-intact mice or OVX). Our findings indicate a lack of cardioprotective effect of dietary FO in females, determined by assessment of mechanical and arrhythmic activity postischemia in a murine ex vivo heart model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whereas previous studies have shown that opening of the mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel protects the adult heart against ischemia-reperfusion injury, it remains to be established whether this mechanism also operates in the developing heart. Isolated spontaneously beating hearts from 4-day-old chick embryos were subjected to 30 min of anoxia followed by 60 min of reoxygenation. The chrono-, dromo-, and inotropic disturbances, as well as alterations of the electromechanical delay (EMD), reflecting excitation-contraction (E-C) coupling, were investigated. Production of reactive oxygen species (ROS) in the ventricle was determined using the intracellular fluorescent probe 2',7'-dichlorofluorescin (DCFH). Effects of the specific mitoK(ATP) channel opener diazoxide (Diazo, 50 microM) or the blocker 5-hydroxydecanoate (5-HD, 500 microM), the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 50 microM), the antioxidant N-(2-mercaptopropionyl)glycine (MPG, 1 mM), and the PKC inhibitor chelerythrine (Chel, 5 microM) on oxidative stress and postanoxic functional recovery were determined. Under normoxia, the baseline parameters were not altered by any of these pharmacological agents, alone or in combination. During the first 20 min of postanoxic reoxygenation, Diazo doubled the peak of ROS production and, interestingly, accelerated recovery of ventricular EMD and the PR interval. Diazo-induced ROS production was suppressed by 5-HD, MPG, or L-NAME, but not by Chel. Protection of ventricular EMD by Diazo was abolished by 5-HD, MPG, L-NAME, or Chel, whereas protection of the PR interval was abolished by L-NAME exclusively. Thus pharmacological opening of the mitoK(ATP) channel selectively improves postanoxic recovery of cell-to-cell communication and ventricular E-C coupling. Although the NO-, ROS-, and PKC-dependent pathways also seem to be involved in this cardioprotection, their interrelation in the developing heart can differ markedly from that in the adult myocardium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: To assess the post-ischemic skin blood flow response after withdrawal of antihypertensive therapy in hypertensive patients with normal blood pressure during treatment. DESIGN AND METHODS: Twenty hypertensive patients (group A) with a normal clinic blood pressure (<140/ 90 mmHg) receiving antihypertensive treatment (any monotherapy; one pill per day for at least 6 months) had their treatment discontinued. Before medication withdrawal and 2, 4, 12 and 24 weeks thereafter, the following measurements were made: clinic blood pressure, home blood pressure (three times per week, morning and evening) and skin blood flow response to a 5 min forearm arterial occlusion (using laser Doppler flowmetry). The patients were asked to perform an ambulatory blood pressure recording at any time if home blood pressure was > or =160/95 mmHg on two consecutive days, and treatment was initiated again, after determination of the skin hyperemic response, if daytime ambulatory blood pressure was > or =140/90 mmHg. The same studies were performed in 20 additional hypertensive individuals in whom antihypertensive treatment was not withdrawn (group B). The allocation of patients to groups A and B was random. RESULTS: The data fom 18 patients in group A who adhered strictly to the procedure were available for analysis. Seven of them had to start treatment again within the first 4 weeks of follow-up; four additional patients started treatment again during the next 8 weeks (group A1). The seven other patients remained untreated (group A2). The skin hyperemic response decreased significantly in patients in group A1 and returned to baseline values at the end of the study, when there were again receiving antihypertensive treatment. In patients in group A2 a significant attenuation of the hyperemic response was also observed. This impaired response was present even at the end of the 6 month follow-up, at which time the patients were still untreated but exhibited a significantly greater blood pressure than before drug discontinuation. The hyperemic response of patients who did not stop treatment (group B) did not change during the course of the study. CONCLUSIONS: Our findings show a decrease in the postischemic skin blood flow response after withdrawal of antihypertensive treatment in hypertensive patients. This impaired response may be due to the development of endothelial dysfunction, vascular remodeling, or both, and might contribute to the return of blood pressure to hypertensive values after withdrawal of antihypertensive therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Levels of circulating cardiac troponin I (cTnI) or T are correlated to extent of myocardial destruction after an acute myocardial infarction. Few studies analyzing this relation have employed a second-generation cTnI assay or cardiac magnetic resonance (CMR) as the imaging end point. In this post hoc study of the Efficacy of FX06 in the Prevention of Mycoardial Reperfusion Injury (F.I.R.E.) trial, we aimed at determining the correlation between single-point cTnI measurements and CMR-estimated infarct size at 5 to 7 days and 4 months after a first-time ST-elevation myocardial infarction (STEMI) and investigating whether cTnI might provide independent prognostic information regarding infarct size at 4 months even taking into account early infarct size. Two hundred twenty-seven patients with a first-time STEMI were included in F.I.R.E. All patients received primary percutaneous coronary intervention within 6 hours from onset of symptoms. cTnI was measured at 24 and 48 hours after admission. CMR was conducted within 1 week of the index event (5 to 7 days) and at 4 months. Pearson correlations (r) for infarct size and cTnI at 24 hours were r = 0.66 (5 days) and r = 0.63 (4 months) and those for cTnI at 48 hours were r = 0.67 (5 days) and r = 0.65 (4 months). In a multiple regression analysis for predicting infarct size at 4 months (n = 141), cTnI and infarct location retained an independent prognostic role even taking into account early infarct size. In conclusion, a single-point cTnI measurement taken early after a first-time STEMI is a useful marker for infarct size and might also supplement early CMR evaluation in prediction of infarct size at 4 months.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Postischemic recovery of contractile function is better in hearts from fasted rats than in hearts from fed rats. In this study, we examined whether feeding-induced inhibition of palmitate oxidation at the level of carnitine palmitoyl transferase I is involved in the mechanism underlying impaired recovery of contractile function. Hearts isolated from fasted or fed rats were submitted to no-flow ischemia followed by reperfusion with buffer containing 8 mM glucose and either 0.4 mM palmitate or 0.8 mM octanoate. During reperfusion, oxidation of palmitate was higher after fasting than after feeding, whereas oxidation of octanoate was not influenced by the nutritional state. In the presence of palmitate, recovery of left ventricular developed pressure was better in hearts from fasted rats. Substitution of octanoate for palmitate during reperfusion enhanced recovery of left ventricular developed pressure in hearts from fed rats. However, the chain length of the fatty acid did not influence diastolic contracture. The results suggest that nutritional variation of mitochondrial fatty acid transfer may influence postischemic recovery of contractile function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In response to pathological stresses, the heart undergoes a remodelling process associated with cardiac hypertrophy. Since sustained hypertrophy can progress to heart failure, there is an intense investigation about the intracellular signalling pathways that control cardiomyocyte growth. Accumulating evidence has demonstrated that most stimuli known to initiate pathological changes associated with the development of cardiac hypertrophy activate G protein-coupled receptors (GPCRs) including the αl-adrenergic- (αl-AR), Angiotensin II- (AT-R) and endothelin-1- (ET-R) receptors. In this context, we have previously identified a cardiac scaffolding protein, called AKAP-Lbc (Α-kinase anchoring protein), with an intrinsic Rho specific guanine nucleotide exchange factor activity, that plays a key role in integrating and transducing hypertrophic signals initiated by these GPCRs (Appert-Collin, Cotecchia et al. 2007). Activated RhoA controls the transcriptional activation of genes involved in cardiomyocyte hypertrophy through signalling pathways that remain to be characterized. Here, we identified the nuclear factor-Kappa Β (NF-κΒ) activating kinase ΙΚΚβ as a novel AKAP-Lbc interacting protein. This raises the hypothesis that AKAP-Lbc might promote cardiomyocyte growth by maintaining a signalling complex that promotes the activation of the pro-hypertrophic transcription factor NF-κΒ. In fact, the activation of NF- κΒ-dependent transcription has been detected in numerous disease contexts, including hypertrophy, ischemia/reperfusion injury, myocardial infarction, allograft rejection, myocarditis, apoptosis, and more (Hall, Hasday et al. 2006). While it is known by more than a decade that NF-κΒ is a critical mediator of cardiac hypertrophy, it is currently poorly understood how pro-hypertrophic signals controlling NF-κΒ transcriptional activity are integrated and coordinated within cardiomyocytes. In this study, we show that AKAP-Lbc and ΙΚΚβ form a transduction complex in cardiomyocytes that couples activation of αl-ARs to NF-κB-mediated transcriptional reprogramming events associated with cardiomyocyte hypertrophy. In particular, we can show that activation of ΙΚΚβ within the AKAP-Lbc complex promotes NF-κB-dependent production of interleukine-6 (IL-6), which, in turn, enhances foetal gene expression. These findings indicate that the AKAP-Lbc/ΙΚΚβ complex is critical for selectively directing catecholamine signals to the induction of cardiomyocyte hypertrophy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Graft vasculopathy is an accelerated form of coronary artery disease that occurs in transplanted hearts. Despite major advances in immunosuppression, the prevalence of the disease has remained substantially unchanged during the last two decades. According to the 'response to injury' paradigm, graft vasculopathy is the result of a continuous inflammatory response to tissue injury initiated by both alloantigen-dependent and independent stress responses. Experimental evidence suggests that these responses may become self-sustaining, as allograft re-transplantation into the donor strain at a later stage fails to prevent disease progression. Histological evidence of endothelitis and arteritis, in association with intima fibrosis and atherosclerosis, reflects the central role of alloimmunity and inflammation in the development of arterial lesions. Experimental results in gene-targeted mouse models indicate that cellular and humoral immune responses are both involved in the pathogenesis of graft vasculopathy. Circulating antibodies against donor endothelium are found in a significant number of patients, but their pathogenic role is still controversial. Alloantigen-independent factors include donor-transmitted coronary artery disease, surgical trauma, ischaemia-reperfusion injury, viral infections, hyperlipidaemia, hypertension, and glucose intolerance. Recent therapeutic advances include the use of novel immunosuppressive agents such as sirolimus (rapamycin), HMG-CoA reductase inhibitors, calcium channel blockers, and angiotensin converting enzyme inhibitors. Optimal treatment of cardiovascular risk factors remains of paramount importance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heart transplantation is the treatment of choice for many patients with end-stage heart failure. Its success, however, is limited by organ shortage, side effects of immunosuppressive drugs, and chronic rejection. Gene therapy is conceptually appealing for applications in transplantation, as the donor organ is genetically manipulated ex vivo before transplantation. Localised expression of immunomodulatory genes aims to create a state of immune privilege within the graft, which could eliminate the need for systemic immunosuppression. In this review, recent advances in the development of gene therapy in heart transplantation are discussed. Studies in animal models have demonstrated that genetic modification of the donor heart with immunomodulatory genes attenuates ischaemia-reperfusion injury and rejection. Alternatively, bone marrow-derived cells genetically engineered with donor-type major histocompatibility complex (MHC) class I or II promote donor-specific hyporesponsiveness. Genetic engineering of naïve T cells or dendritic cells may induce regulatory T cells and regulatory dendritic cells. Despite encouraging results in animal models, however, clinical gene therapy trials in heart transplantation have not yet been started. The best vector and gene to be delivered remain to be identified. Pre-clinical studies in non-human primates are needed. Nonetheless, the potential of gene therapy as an adjunct therapy in transplantation is essentially intact.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Accumulation of fat in the liver increases the risk to develop fibrosis and cirrhosis and is associated with development of the metabolic syndrome. Here, to identify genes or gene pathways that may underlie the genetic susceptibility to fat accumulation in liver, we studied A/J and C57Bl/6 mice that are resistant and sensitive to diet-induced hepatosteatosis and obesity, respectively. We performed comparative transcriptomic and lipidomic analysis of the livers of both strains of mice fed a high fat diet for 2, 10, and 30 days. We found that resistance to steatosis in A/J mice was associated with the following: (i) a coordinated up-regulation of 10 genes controlling peroxisome biogenesis and β-oxidation; (ii) an increased expression of the elongase Elovl5 and desaturases Fads1 and Fads2. In agreement with these observations, peroxisomal β-oxidation was increased in livers of A/J mice, and lipidomic analysis showed increased concentrations of long chain fatty acid-containing triglycerides, arachidonic acid-containing lysophosphatidylcholine, and 2-arachidonylglycerol, a cannabinoid receptor agonist. We found that the anti-inflammatory CB2 receptor was the main hepatic cannabinoid receptor, which was highly expressed in Kupffer cells. We further found that A/J mice had a lower pro-inflammatory state as determined by lower plasma levels and IL-1β and granulocyte-CSF and reduced hepatic expression of their mRNAs, which were found only in Kupffer cells. This suggests that increased 2-arachidonylglycerol production may limit Kupffer cell activity. Collectively, our data suggest that genetic variations in the expression of peroxisomal β-oxidation genes and of genes controlling the production of an anti-inflammatory lipid may underlie the differential susceptibility to diet-induced hepatic steatosis and pro-inflammatory state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: Apoptosis is known to play a key role in cell death after retinal ischemia. However, little is known about the kinetics of the signaling pathways involved and their contribution to this process. The aim of this study was to determine whether changes in the expression of molecules in the mitochondrial apoptotic pathway might explain the progression of retinal damage following ischemia/reperfusion. METHODS: Retinal ischemia was induced by elevating intraocular pressure in the vitreous cavity to 150 mmHg for a period of 60 min. At time 0, 3 h (early phase), and 24 h (late phase) after reperfusion, the retinas were harvested and modifications in the expression of Bax, Bak, Bcl-2, and Bcl-x(L) as well as caspase-3 and -7, were examined by qPCR and, in some cases, by western blot. RESULTS: qPCR analysis performed at the early phase after ischemia revealed a time dependent decrease in Bax, Bak, and Bcl-x(L) and no alteration in Bcl-2 mRNA expression in response to retinal ischemia. At the protein level, proapoptotic Bax and Bak were not modulated while Bcl-2 and Bcl-x(L) were significantly upregulated. At this stage, the Bax per Bcl-2 and Bax:Bcl-x(L) ratios were not modified. At the late phase of recovery, Bax and Bcl-x(L) mRNAs were downregulated while Bak was increased. Increased Bax:Bcl-2 and Bax:Bcl-x(L) ratios at both the mRNA and protein levels were observed 24 h after the ischemic insult. Analysis of caspases associated with mitochondria-mediated apoptosis revealed a specific increase in the expression of caspase-3 in the ischemic retinas 24 h after reperfusion, and a decrease in the expression of caspase-7. CONCLUSIONS: This study revealed that Bcl-2-related family members were differently regulated in the early and late phases after an ischemic insult. We showed that the Bax:Bcl-2 and Bax:Bcl-x(L) balances were not affected in the initial phases, but the Bax:Bcl-x(L) ratio shifted toward apoptosis during the late phase of recovery. This shift was reinforced by caspase-3 upregulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND/AIM: Excitation-contraction coupling is modulated by nitric oxide (NO) which otherwise has either beneficial or detrimental effects on myocardial function during hypoxia-reoxygenation. This work aimed at characterizing the variations of electromechanical delay (EMD) induced by anoxia-reoxygenation within the developing heart and determining whether atrial and ventricular EMD are modulated by NO to the same extent. METHODS: Hearts of 4 or 4.5-day-old chick embryos were excised and submitted in vitro to normoxia (45 min), anoxia (30 min) and reoxygenation (60 min). Electrocardiogram and atrial and ventricular contractions were simultaneously recorded throughout experiment. Anoxia-reoxygenation-induced chrono-, dromo-and inotropic disturbances and changes in EMD in atrium (EMDa) and ventricle (EMDv) were investigated in control hearts and in hearts exposed to 0.1, 1, 10, 50 and 100 microM of DETA-NONOate (a NO donating agent) or to 50 microM of L-NAME (a NOS inhibitor). RESULTS: Under normoxia, heart rate, PR interval, ventricular shortening velocity, EMDa and EMDv were similar in control, L-NAME-treated and DETA-NONOate-treated hearts. Under anoxia, cardiac activity became markedly erratic within less than 10 min in all groups. At the onset of reoxygenation, EMDv was increased by about 300% with respect to the preanoxic value while EMDa did not vary significatively. Compared to control conditions, L-NAME or DETA-NONOate had no influence on the negative chrono-, dromo- and inotropic effects induced by anoxia-reoxygenation. However, L-NAME prolonged EMDv during anoxia and delayed EMDv recovery during reoxygenation while 100 microM DETA-NONOate had the opposite effects. EMDa was neither affected by NOS inhibitor nor NO donor. At the end of reoxygenation, all the investigated parameters returned to their basal values. CONCLUSION: This work provides evidence that a NO-dependent pathway is involved in regulation of the ventricular excitation-contraction coupling in the anoxic-reoxygenated developing heart.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, rapid and transient cardiac pacing was shown to induce preconditioning in animal models. Whether the electrical stimulation per se or the concomitant myocardial ischemia affords such a protection remains unknown. We tested the hypothesis that chronic pacing of a cardiac preparation maintained in a normoxic condition can induce protection. Hearts of 4-day-old chick embryos were electrically paced in ovo over a 12-h period using asynchronous and intermittent ventricular stimulation (5 min on-10 min off) at 110% of the intrinsic rate. Sham (n = 6) and paced hearts (n = 6) were then excised, mounted in vitro, and subjected successively to 30 min of normoxia (20% O(2)), 30 min of anoxia (0% O(2)), and 60 min of reoxygenation (20% O(2)). Electrocardiogram and atrial and ventricular contractions were simultaneously recorded throughout the experiment. Reoxygenation-induced chrono-, dromo-, and inotropic disturbances, incidence of arrhythmias, and changes in electromechanical delay (EMD) in atria and ventricle were systematically investigated in sham and paced hearts. Under normoxia, the isolated heart beat spontaneously and regularly, and all baseline functional parameters were similar in sham and paced groups (means +/- SD): heart rate (190 +/- 36 beats/min), P-R interval (104 +/- 25 ms), mechanical atrioventricular propagation (20 +/- 4 mm/s), ventricular shortening velocity (1.7 +/- 1 mm/s), atrial EMD (17 +/- 4 ms), and ventricular EMD (16 +/- 2 ms). Under anoxia, cardiac function progressively collapsed, and sinoatrial activity finally stopped after approximately 9 min in both groups. During reoxygenation, paced hearts showed 1) a lower incidence of arrhythmias than sham hearts, 2) an increased rate of recovery of ventricular contractility compared with sham hearts, and 3) a faster return of ventricular EMD to basal value than sham hearts. However, recovery of heart rate, atrioventricular conduction, and atrial EMD was not improved by pacing. Activity of all hearts was fully restored at the end of reoxygenation. These findings suggest that chronic electrical stimulation of the ventricle at a near-physiological rate selectively alters some cellular functions within the heart and constitutes a nonischemic means to increase myocardial tolerance to a subsequent hypoxia-reoxygenation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Unlike in adult heart, embryonic myocardium works at low PO2 and depends preferentially on glucose. Therefore, activity of the embryonic heart during anoxia and reoxygenation should be particularly affected by changes in glucose availability. Hearts excised from 4-d-old chick embryos were submitted in vitro to strictly controlled anoxia-reoxygenation transitions at glucose concentrations varying from 0 to 20 mmol/L. Spontaneous and regular heart contractions were detected optically as movements of the ventricle wall and instantaneous heart rate, amplitude of contraction, and velocities of contraction and relaxation were determined. Anoxia induced transient tachycardia and rapidly depressed contractile activity, whereas reoxygenation provoked a temporary and complete cardioplegia (oxygen paradox). In the presence of glucose, atrial rhythm became irregular during anoxia and chaotic-periodic during reoxygenation. The incidence of these arrhythmias depended on duration of anoxia, and no ventricular ectopic beats were observed. Removal of glucose or blockade of glycolysis suppressed arrhythmias. These results show similarities but also differences with respect to the adult heart. Indeed, glucose 1) delayed and anoxic contractile failure, shortened the reoxygenation-induced cardiac arrest, and improved the recovery of contractile activity; 2) attenuated stunning at 20 mmol/L but worsened it at 8 mmol/L; and 3) paradoxically, was arrhythmogenic during anoxia and reoxygenation, especially when present at the physiologic concentration of 8 mmol/L. The last named phenomenon seems to be characteristic of the young embryonic heart, and our findings underscore that fluctuations of glycolytic activity may play a role in the reactivity of the embryonic myocardium to anoxiareoxygenation transitions.