997 resultados para relaxation processes


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Erectile dysfunction is considered an early clinical manifestation of vascular disease and an independent risk factor for cardiovascular events associated with endothelial dysfunction and increased levels of pro-inflammatory cytokines. Tumor necrosis factor-alpha (TNF-alpha), a pro-inflammatory cytokine, suppresses endothelial nitric oxide synthase (eNOS) expression. Considering that nitric oxide (NO) is of critical importance in penile erection, we hypothesized that blockade of TNF-alpha actions would increase cavernosal smooth muscle relaxation. In vitro organ bath studies were used to measure cavernosal reactivity in wild type and TNF-alpha knockout (TNF-alpha KO) mice and NOS expression was evaluated by western blot. In addition, spontaneous erections (in vivo) were evaluated by videomonitoring the animals (30 minutes). Collagen and elastin expression were evaluated by Masson trichrome and Verhoff-van Gieson stain reaction, respectively. Corpora cavernosa from TNF-alpha KO mice exhibited increased NO-dependent relaxation, which was associated with increased eNOS and neuronal NOS (nNOS) cavernosal expression. Cavernosal strips from TNF-alpha KO mice displayed increased endothelium-dependent (97.4 +/- 5.3 vs. Control: 76.3 +/- 6.3, %) and nonadrenergic-noncholinergic (93.3 +/- 3.0 vs. Control: 67.5 +/- 16.0; 16 Hz) relaxation compared to control animals. These responses were associated with increased protein expression of eNOS and nNOS (P < 0.05). Sympathetic-mediated (0.69 +/- 0.16 vs. Control: 1.22 +/- 0.22; 16 Hz) as well as phenylephrine-induced contractile responses (1.6 +/- 0.1 vs. Control: 2.5 +/- 0.1, mN) were attenuated in cavernosal strips from TNF-alpha KO mice. Additionally, corpora cavernosa from TNF-alpha KO mice displayed increased collagen and elastin expression. In vivo experiments demonstrated that TNF-alpha KO mice display increased number of spontaneous erections. Corpora cavernosa from TNF-alpha KO mice display alterations that favor penile tumescence, indicating that TNF-alpha plays a detrimental role in erectile function. A key role for TNF-alpha in mediating endothelial dysfunction in ED is markedly relevant since we now have access to anti-TNF-alpha therapies. Carneiro FS, Sturgis LC, Giachini FRC, Carneiro ZN, Lima VV, Wynne BM, Martin SS, Brands MW, Tostes RC, and Webb RC. TNF-alpha knockout mice have increased corpora cavernosa relaxation. J Sex Med 2009;6:115-125.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compound 48/80 (C48/80) is a synthetic condensation product of N-methyl-p-methoxyphenethyl am me with formaldehyde and is an experimental drug used since the 1950s to induce anaphylactic shock through histamine release. This study was carried out to further elucidate the mechanism by which this drug induces nitric oxide (NO) release. Our specific goals were: (a) to verify if C48/80`s relaxation occurs through the stimulation of histamine receptors; (b) to evaluate the endothelium-dependent relaxation induced by C48/80; (c) to identify NO as the endothelium-relaxing factor released by C48/80; (d) to identify the NO synthase (NOS) responsible for NO release; and (e) to verify if the relaxation induced by C48/80 is calcium and cyclic guanidine monophosphate (cGMP) dependent. Rabbit aorta segments, with and without endothelium, were suspended in organ chambers (25 ml) filled with Krebs solution maintained at 37 degrees C, bubbled with 95% O-2/5% CO2 (pH 7.4). Phenylephrine was used to contract the segments. Other protocol drugs included H-1- and H-2-receptor antagonists, cyclooxygenase, NOS, guanylyl cyclase and phospholipase C (PLC) inhibitors. Endothelium-dependent relaxation induced by C48/80 was also studied in calcium-free Krebs solution associated with a calcium chelator. In summary, our investigation demonstrated that the C48/80 vasodilating action: (a) does not depend on H-1 and H-2 histamine receptors; (b) is NO endothelium-dependent; (c) is dependent on the endothelial constitutive NOS (NOS-3) isoform activation; (d) is cGMP-dependent; and that NOS-3 activation by C48/80: (a) is independent of PLC up to 25 mu g/ml and (b) is partially dependent of this lipase in higher doses. (C) 2007 Elsevier Inc. All rights reserved.