991 resultados para recrystallization (metallurgy)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multi-phase, metastable, and multi-scale (M3) constitution of a novel transformation-induced plasticity (TRIP) steel (Fe-0.17C-6.5Mn-1.1Al-0.22Mo-0.05Nb, wt pct) was designed through thermodynamic calculations combined with experimental analysis. In this study, Mo and Nb microalloying was used to control the fraction of retained austenite and its mechanical stability during tensile deformation and to improve the yield strength. Thermodynamic calculations were developed to determine the critical annealing temperature, at which a large fraction of retained austenite (~38 pct) would be obtained through the effects of solute enrichment. The experimental observation was in good agreement with the predicted results. According to the critical annealing temperature, such an ultrafine (<200 nm) M3, microstructure with optimum mechanical stability was successfully achieved. The results of this work demonstrated the superior performance with improved yield strength of 1020 to 1140 MPa and excellent ductility (>30 pct), as compared with other TRIP steels. Both angle-selective backscatter and electron backscatter diffraction techniques were employed to interpret the transformation from the deformed martensitic laths to the ultrafine austenite and ferrite duplex structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of the methodology for creating reliable digital material representation (DMR) models of dual-phase steels and investigation of influence of the martensite volume fraction on fracture behavior under tensile load are the main goals of the paper. First, an approach based on image processing algorithms for creating a DMR is described. Then, obtained digital microstructures are used as input for the numerical model of deformation, which takes into account mechanisms of ductile fracture. Ferrite and martensite material model parameters are evaluated on the basis of micropillar compression tests. Finally, the model is used to investigate the impact of the martensite volume fraction on the DP steel behavior under plastic deformation. Results of calculations are presented and discussed in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many difficulties exist in directly following the static recrystallization of metals, particularly during hotworking. Indirect measurement of static recrystallization has been extensively performed in the literature where, for example, the recrystallization behavior of austenite in steels has commonly been measured indirectly using the fractional softening method. This method relies on the yield stress changes during recrystallization which are physically simulated by hot torsion or compression tests. However, the inherent heterogeneity of deformation during a mechanical test leads to a non-uniform static recrystallization distribution in the test sample. This, in turn, poses a serious question concerning the reliability of the measurement since the stress calculation techniques during recrystallization are not adequately developed in the existing literature. This paper develops a computer-based method to account for heterogeneous deformation during fractional softening measurements based on the hot torsion test data. The importance of the fractional softening gradient in determining the kinetics is emphasized and deficiencies in our understanding of the basic mechanisms are highlighted. A computer-based method is introduced to generate the experimental and computational components in a cost function. The cost function is then utilized by an inverse solution to calibrate the design parameters in a static recrystallization model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single pass warm rolling and compression experiments were carried out from ambient to 800°C for ultra-low carbon (ULC) steel with ∼100 ppm carbon and interstitial free (IF) steels, both with two levels of silicon. Subsequently, annealing was done in order to recrystallize the deformed specimens. The main purpose of this study was to understand the effects of rolling temperature and silicon on stress responses and textures. This study comprises two main themes: flow stress and strain rate sensitivity during compression and shear banding and textures in warm rolled specimens. The effects of deformation temperature on in-grain shear bands were different between ULC-Si and IF-Si steels. As in previous work with more conventional steels, in-grain shear bands in the IF grade had low sensitivity to rolling temperature, while those in the ULC grade depended significantly on the deformation temperature. However, the temperature profile of shear banding in the ULC grade was approximately 150°C higher than in previous work. Deformation and recrystallisation textures for both IF and ULC grades depended on their rolling temperatures. The variation of both grain size and texture after annealing can be explained by the rise and fall of in-grain shear banding activity which is related to the strain rate sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterogeneous deformation developed during "static recrystallization (SRX) tests" poses serious questions about the validity of the conventional methods to measure softening fraction. The challenges to measure SRX and verify a proposed kinetic model of SRX are discussed and a least square technique is utilized to quantify the error in a proposed SRX kinetic model. This technique relies on an existing computational-experimental multi-layer formulation to account for the heterogeneity during the post interruption hot torsion deformation. The kinetics of static recrystallization for a type 304 austenitic stainless steel deformed at 900 °C and strain rate of 0.01s-1 is characterized implementing the formulation. Minimizing the error between the measured and calculated torque-twist data, the parameters of the kinetic model and the flow behavior during the second hit are evaluated and compared with those obtained based on a conventional technique. Typical static recrystallization distributions in the test sample will be presented. It has been found that the major differences between the conventional and the presented technique results are due to the heterogeneous recrystallization in the cylindrical core of the specimen where the material is still partially recrystallized at the onset of the second hit deformation. For the investigated experimental conditions, the core is confined in the first two-thirds of the gauge radius, when the holding time is shorter than 50 s and the maximum pre-strain is about 0.5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015 Published by Elsevier Ltd. All rights reserved. Accurate static recrystallization (SRX) models are necessary to improve the properties of austenitic steels by thermo-mechanical operations. This relies heavily on a careful and accurate analysis of "the interrupted test data" and conversion of the heterogeneous deformation data to the flow stress. A "computational-experimental inverse method" was presented and implemented here to analyze the SRX test data, which takes into account the heterogeneous softening of the post-interruption test sample. Conventional and "inverse" methods were used to identify the SRX kinetics for a model austenitic steel deformed at 1273 K (with a strain rate of 1 s-1) using the hot torsion test assess the merits of each method. Typical "static recrystallization distribution maps" in the test sample indicated that, at the onset of the second pass deformation with less than a critical holding time and a given pre-strain, a "partially-recrystallized zone" existed in the cylindrical core of the specimen near its center line. For the investigated scenario, the core was confined in the first half of the gauge radius when the holding time and the maximum pre strain were below 29 s and 0.5, respectively. For maximum pre strains smaller than 0.2, the specimen did not fully recrystallize, even at the gauge surface after holding for 50 s. Under such conditions, the conventional methods produced significant error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An as-cast austenitic stainless steel was hot deformed at 1173 K, 1223 K, and 1373 K (900 °C, 950 °C, and 1100 °C) to a strain of 1 with a strain rate of 0.5 or 5 s−1. The recrystallised fraction is observed to be dependent on dynamic recrystallisation (DRX). DRX grains nucleated at the initial stages of recrystallization have similar orientation to that of the deformed grains. With increasing deformation, Cube texture dominates, mainly due to multiple twinning and grain rotation during deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work evaluates the effect of co-existence of a large volume fraction of δ-ferrite on the hot deformation and dynamic recrystallization (DRX) of austenite using comparative hot torsion tests on AISI 304 austenitic and 2205 duplex stainless steels. The comparison was performed under similar deformation conditions (i.e. temperature and strain rate) and also under similar Zener-Hollomon, Z, values. The torsion data were combined with electron backscatter diffraction (EBSD) analysis to study the microstructure development. The results imply a considerable difference between DRX mechanisms, austenite grain sizes and also DRX kinetics of two steels. Whereas austenitic stainless steel shows the start of DRX at very low strains and then development of that microstructure based on the necklace structure, the DRX phenomena in the austenite phase of duplex structure does not proceed to a very high fraction. Also, the DRX kinetics in the austenitic steel are much higher than the austenite phase of the duplex steel. The results suggest that at a similar deformation condition the DRX grain size of austenitic steel is almost three times larger than the DRX grains of austenite phase in duplex steel. Similarly, the ratio of DRX grain size in the austenitic to the duplex structure at the same Z values is about 1.5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium alloys have several advantages over ferrous and non-ferrous metallic materials, such as high strengthto-weight ratio and excellent corrosion resistance. A blended elemental titanium powder metallurgy process has been developed to offer low cost commercial products. The process employs hydride-dehydride (HDH) powders as raw material. In this work, results of the Ti-35Nb alloy sintering are presented. This alloy due to its lower modulus of elasticity and high biocompatibility is a promising candidate for aerospace and medical use. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by isochronal sintering between 900 up to 1600 °C, in vacuum. Sintering behavior was studied by means of microscopy and density. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Samples sintered at high temperatures display a fine plate-like alpha structure and intergranular beta. A few remaining pores are still found and density above 90% for specimens sintered in temperatures over 1500 °C is reached.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium and its alloys provide high strength-to-weight ratios, good fatigue strength and increased corrosion resistance compared with others materials. Its acceptance in aerospace has been limited by costs considerations such as high cost of raw material, high buy-to-fly ratios and expensive machining operations. Significant cost reductions can be obtained by vacuum sintering and powder metallurgy (P/M) techniques by producing near net shapes and consequently minimizing material waste and machining time. The Ti 35Nb alloy exhibit a low modulus of elasticity. Stemming from the unique combination of high strength, low modulus of elasticity and low density, this alloy is intrinsically more resistant to shock and explosion damages than most other engineering materials. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering between 900 and 1600 °C, in vacuum. Sintering behavior was studied by means of dilatometry. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Density was measured by Archimedes method. Copyright © 2004 Society of Automotive Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous titanium scaffolds are promising materials for biomedical applications such as prosthetic anchors, fillers and bone reconstruction. This study evaluated the bone/titanium interface of scaffolds with interconnected pores prepared by powder metallurgy, using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Porous scaffolds and dense samples were implanted in the tibia of rabbits, which were subsequently killed 1, 4, and 8 weeks after surgery. Initial bone neoformation was observed one week after implantation. Bone ingrowth in pores and the Ca/P ratio at the interface were remarkably enhanced at 4 and 8 weeks. The results showed that the interconnected pores of the titanium scaffolds promoted bone ingrowth, which increased over time. The powder metallurgy technique thus proved effective in producing porous scaffolds and dense titanium for biomedical applications, allowing for adequate control of pore size and porosity and promoting bone ingrowth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermogravimetry, differential scanning calorimetry, and vibrational infrared spectroscopy were used to study nimesulide and its recrystallization products that were obtained from solutions of several alcohols. The thermoanalytical measurements were performed in both air and nitrogen atmospheres and the results suggest that, under the experimental conditions used in this paper, it was possible to obtain neither polymorphic nor pseudopolymorphic forms of this drug. In this investigation, quantum chemical approach methods were used to determine the molecular structures using the Becke three-parameter hybrid method and the Lee-Yang-Parr correlation functional. The performed molecular calculations were done with the Gaussian 09 routine and the theoretical calculation results were correlated with the experimental IR vibrational spectrum. © 2013 Akadémiai Kiadó, Budapest, Hungary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physical origins of the magnetic properties of nonoriented electrical steels; its relations to microstructural features like grain size, nonmetallic inclusions, dislocation density distribution, crystallographic texture, and residual stresses; and its processing by cold rolling and annealing are overviewed, using quantitative relations whenever available.