422 resultados para recrystallization
Resumo:
Many garnet peridotite bodies are enclosed in ultrahigh-pressure (UHP) gneisses and/or migmatites in worldwide UHP terranes formed by subduction of continental crust. On the basis of petrochemical data, a group of garnet peridotites have been derived from depleted mantle and were subsequently metasomatized by melts and/or fluids derived from the subducted continental crust. However, their depletion and enrichment processes and tectonic evolutions are still in conflicts. New evidences for metamorphism of garnet lherzolite from Zhimafang, Donghai County, Sulu UHP terrane are reported. The garnet lherzolite have experienced a prolonged multistage metamorphic history. At least seven stages of recrystallization have been identified based on detailed analysis of reaction textures and mineral compositions. Stage I was a high-pressure and high-temperature enriched garnet lherzolite stage, which is inferred from the presence of high Ca-Cr core of garnet porphyroclast and inclusions of high-Mg clinopyroxene, high-Al-Cr orthopyroxene and high-Mg olivine. Stage II is a high-temperature and low-pressure depleted spinel-hurzbergite or spinel-dunite stage, as indicated by the presence of relict Al-rich spinel, very high-Mg and low-Ni olivine and high-Mg orthopyroxene included in the low-Cr mantle of the porphyroclastic garnet and core of fine-grained neoblastic garnet, clinopyroxene is absent in this stage. Stage III is an hydrous amphibole spinel-lherzolite stage, which recorded events of cooling and metasomatic re-enrichment, this stage is manifested by metasomatic origin of amphibole and phlogopite-bearing porphyroblastic clinopyroxene, and porphyroblastic orthopyroxene. Stage IV is a high-pressure amphibole garnet-lherzolite stage, which is indicated by the formation of low-Cr mantle of the porphyroclastic garnet and amphibole-bearing low-Cr core of neoblastic garnet. Stage V is an UHP metamorphic garnet-lherzolite stage, which is characterized by the formation of high-Cr rim of both porphyroclastic and neoblastic garnet and recrystallization of olivine, clinopyroxene and orthopyroxene in the matrix. During UHP metamorphism, the garnet lherzolite is dehydrated, hornblende decomposed to clinopyroxene and olivine. Stage VI is a high-pressure decompression amphibole garnet-lherzolite stage, indicated by formation of later coarse-grained pargasitic hornblende and phlogopite in the garnet stability field. Stage VII is a low-pressure decompression amphibole-chlorite spinel-lherzolite stage, indicated by replacement of garnet by kelyphite of high-Al orthopyroxene + aluminous spinel + tremolitic amphibole + chlorite + talc. The metamorphic evolutions of Zhimafang garnet lherzolite suggest that it displays progressive mantle wedge convection during the subduction of previous oceanic and subsequent continental slab. We propose that the Zhimafang garnet lherzolite were originated from enriched deep mantle wedge above the previously subducted oceanic slab, subduction of oceanic slab resulted in their convection to shallower back arc and sub-arc setting, decompressional melting transformed the enriched garnet-lherzolite to depleted spinel-hurzbergite or spinel-dunite, the spinel-hurzbergite or spinel dunite was then convected to the hydrous mantle wedge corner driven by corner flow and was cooled and metasomatized by slab-derived melts/fluids, and was transformed to enriched lherzolite. The lherzolites formed a downward mantle wedge layer above successively subducted continental crust. The peridotite subducted together with the underlying continental crust and suffered UHP metamorphism. Finally, the garnet-lherzolite exhumed to the earth surface together with the UHP terrane. Detailed analyses of reaction textures and mineral compositions revealed several stages of metasomatism related to continental subduction and exhumation.
Resumo:
The zircons from gneisses in high and ultrahigh pressure (HP-UHP) metamorphic zones of the Dabie Mountains have been studied on three aspects in this paper, including (1) radiation damage of zircon using Laser Raman spectrum; (2) genesis determination of zircons based on geochemistry; (3) temperature estimate of the HP-UHP metamorphism using Ti-in-zircon thermometer. The zircons have the full widths at half-maximum less than 15 cm-1 at the 1008 cm-1 peak, suggesting that they are well crystallized to moderately damaged. The early inherited zircons from gneisses had undergone significant annealing and recrystallization during the HP-UHP metamorphic event. The α-doses that zircons suffered were accumulated from about 200Ma, indicating that HP-UHP metamorphic rocks have been exhumed to the surface of the earth at this time. The studies from the CL images, mineral inclusions, U-Pb ages and trace elements reveal that metamorphic zircons were formed as two kinds of mechanisms: metamorphic growth and recrystallization. The zircons of metamorphic growth and recrystallization zircons that were completely equilibrated during the HP-UHP metamorphic event have been chosen to carry out for temperature estimate using the Ti-in-zircon thermometer. The result shows that the HP-UHP terrain of the Dabie Mountains can be divided into five zones with temperature gaps, suggesting that the terrain consists of tectonic slices with different metamorphic history.
Resumo:
Ju Nan of Shandong province is located at southwest of Sulu UHP (ultrahigh-pressure) metamorphic terrane. It is composed of gneiss, paragneiss, eclogites, ultramafic rocks, marble and quartzite. A large ductile shear zone extends east-west has been found at the Zhubian, The south of Junan county. The Zhubian ductile shear zone is composed of high srain rock and mylonites. The mylonites fall into 3 types: Initial gneiss mylonite, mylonite and altramylonit.obvious lineation of penetration,foliation,S-Cfabrics,porphyroclasts,folds,irregularundulatory,extinction,subgrain boundary, dynamic recrystallization microstructure, core-mantle structure and are common in the ductile shear zone. Based on field work and microstructural analyse, a conclution is arrived: The ductile shear zone is an approximately SE trending faults. The Zhubian ductile shear zone formed at Ep ―Hb facies conditions which could be proved by deformaed and metamorphosed mineral aggregates, Deformation behavior, Ternary-feldspar geothermometry and so on. Zircon MC―ICP―MS U-Pb analysis is performed on the mylonite and have an average age ―835.9±13.9Ma, it’s the primary rocks formed age. The Zhubian ductile shear zone maybe formed at 224-242Ma.
Resumo:
Duobuza copper deposit, newly discovered typical gold-rich porphyry copper deposit with superlarge potential, is located in the Tiegelong Mesozoic tectonic -magmatic arc of the southern edge of Qiangtang block and the northern margin of Bangonghu-Nujiang suture. Quartz diorite porphyrite and grandiorite porphyry, occurred in stock, are the main ore-bearing porphyries. As the emplacement of porphyry stock, a wide range of hydrothermal alteration has developed. Within the framework of the ore district, abundant hydrothermal magnetite developed, and the relationship between precipitation of copper and gold and hydrothermal magnetite seems much close. Correspondingly, a series of veinlets and network veinlets occurred in all alteration zones. Therefore, systematic research on such a superlarge high-grade Duobuza gold-rich porphyry copper deposit can fully revealed the metallogenic characteristics of gold-rich porphyry copper deposits in this region, establish metallogenetic model and prospecting criteria, and has important practical significance on the promotion of regional exploration. In addition, this research on it can enrich metallogenic theory of strong oxidation magma-fluid to gold-rich porphyry copper deposit, and will be helpful to understand the metallogenic characteristics in early of subduction of Gangdese arc stages and its entire evolution history of the Qinghai-Tibet Plateau, the temporal and spatial distribution of ore deposits and their geodynamics settings. Northern ore body of Duobuza copper deposit have been controlled with width (north-south) about 100 ~ 400 m, length (east-west) about 1400 m, dip of 200 °, angle of dip 65 °~ 80 °. And controlled resource amount is of 2.7 million tons Cu with grade 0.94% and 13 tons Au with 0.21g/tAu. Overall features of ore body are large scale, higher grade copper, gold-rich. Ore occurred in the body of granodiotite porphyry and quartz diorite porphyrite and its contact zone with wall rock. Through the detailed mapping and field work studies, some typies of alteration are identificated as follows: albitization, biotititation, sericitization, silication, epidotization, chloritization, carbonatization, illitization, kaolinization and so on. The range of alteration is more than 10km2. Wall alteration zone can be divided into potassic alteration, moderate argillization alteration, argillization, illite-hydromuscovite or propylitization from ore-bearing porphyry center outwards, but phyllic alteration has not well developed and only sericite-quartz veins occurred in local area. Moreover, micro-fracture is development in ore district , and correspondingly a series of veinlets are development as follows: biotite vein (EB type), K-feldspar-biotite-chalcopyrite-quartz vein, magnetite-antinolite-K-feldspar vein, quartz-chalcopyrite-magnetite veins (A-type), quartz-magnetite-biotite-K-feldspar vein, chalcopyrite veinlets in potassic alteration zone; (2) chalcopyrite occurring in the center vein–quartz vein (B type), chalcopyrite veinlets, chalcopyrite-gypsum vein in intermediate argillization alteration; (3) chalcopyrite- pyrite-quartz vein, pyrite-quartz vein, chalcopyrite-gypsum veins, quartz-gypsum- molybdenite-chalcopyrite vein in argillization alteration; (4) gypsum veins, quartz-(molybdenite)-chalcopyrite vein, quartz-pyrite vein, gypsum- chalcopyrite vein, potassium feldspar veinlets, Carbonate veins, quartz-magnetite veins in the wall rock. In short, various veins are very abundant within the framework of the ore district. The results of electronic probe microscopy analysis (EMPA) indicate that Albite (Ab 91.5~99.7%) occurred along the rim of plagioclase phenocryst and fracture, and respresents the earliest stages of alteration. K-feldspar (Or 75.1~96.9%) altered plagioclase phenocryst and matrix or formed secondary potassium feldspar veinlets. Secondary biotite occurred mainly in phenocryst, matrix and veinlets, belong to magnesium-rich biotite formed under the conditions of high-oxidation magma- hydrothermal. Chloritization developed in all alteration zones and alterd iron- magnesium minerals such as biotite and hornblende and then formed chlorite veinlets. As the temperature rises, Si in the tetrahedral site of chlorite decreased, and chlorite component evolved from diabantite to ripiolite. The consistent 280℃~360℃ of formation temperature hinted that chlorite formed on the same temperature range in all alteration zones. However, formation temperature range of chlorite from the gypsum-carbonate-chlorite vein was 190℃~220℃, and it may be the product of the latest stage of hydrothermal activity. The closely relationship between biotite and rutile indicate that most of rutiles are precipitated in the process of biotite alteration and recrystallization. In addition, the V2O3 concentration of rutile from ore body in Duobuza gold-rich porphyry copper deposit is >0.4%, indicate that V concentration in rutile has important significance on marking main ore body of porphyry copper deposit. Apatites from Duobuza deposit all are F-rich. And apatite in the wall rock contained low MnO content and relatively high FeO content, which may due to the basaltic composition of the wall rocks. The MnO in apatite from altered porphyry show a strong positive correlation with FeO. In addition, Cl/F ratio of apatite from wall rock was highest, followed by the potassic alteration zone and potassic alteration zone overprinted by moderate argillization alteration was the lowest. SO2 in Apatite are in the scope of 0 to 0.66%, biotite in the apatite has the highest SO2, followed by the potassic alteration zone, potassic alteration zone overprinted by moderate argillization alteration, and the lowest in the surrounding rocks, which may be caused by the decrease of oxygen fugacity of hydrothermal fluid and S exhaust by sulfide precipitation in potassic alteration. Magnetite in the wall rock have higher Cr2O3 and lower Al2O3 features compared with altered porphyry, this may be due to basalt wall rock generally has high Cr content. And magnetites have higher TiO2 content in potassic alteration than moderate argillization alteration overprinted by potassic alteration, argillization and wall rock, suggested that its formation temperature in potassic alteration was the highest among them. The ore minerals mainly are chalcopyrite and bornite, and Au contents of chalcopyrite, bornite, and pyrite are similar with chalcopyrite slightly higher. The Eu* negative anomaly of disseminated chalcopyrite was relatively lower than chalcopyrite in veinlets. Within a drill hole, the Eu* negative anomaly of disseminated chalcopyrite was gradually larger from bottom to top. Magnetite has the same distribution model, with obvious negative Eu* abnormal, and ΣREE in great changes. The gypsum has the highest ΣREE content and the obvious negative anomaly, and biotite obviously has the Eu* abnormal. Based on the petrographic and geochemical characteristics, five series of magmatic rocks can be broadly classified; they are volcanic rocks of the normal island arc, high-Nb basaltic rocks, adakites, altered porphyry and diorite. The Sr, Nd, Hf isotopes and geochemistry of various series of magmatic rock show that they may be the result of mixing between basic magma and various degrees of acid magma coming from lower crust melted by high temperature basic underplating from partial melting of the subduction sediment melt metasomatic mantle wedge. Furthermore S isotope and Pb isotope of the sulfide, ore-bearing porphyries and volcanic rocks indicated ore-forming source is the mantle wedge metasomatied by subduction sediment melt. Oxygen fugacity of magma estimated by Fe2O3/FeO of whole rock and zircon Ce4+/Ce3+ indicated that the oxidation of basalt-andesitic rocks is higher than ore-forming porphyry, and might imply high-oxidation characteristics of underplated basic magma. Its high oxidative mechanism is likely mantle sources metasomatied by subduction sediment magma, including water and Fe3+. And such high oxidation of basaltic magma is conducive to the mantle of sulfides in the effective access to melt. And the An component of dark part within plagioclase phenocryst zoning belong to bytownite (An 74%), and its may be a result of magma composition changes refreshment by basaltic magma injection. SHRIMP zircon U-Pb and LA-ICP-MS zircon U-Pb geochronology study showed that the intrusions and volcanic rocks from Duobuza porphyry copper deposit belong to early Cretaceous magma series (126~105Ma). The magma evolution series are as follows: the earliest diorite and diorite porphyrite → ore-bearing porphyry and barren grandiorite porphyry →basaltic andesite → diorite porphyrite → andesite → basaltic andesite, and magma component shows a evolution trend from intermediate to intermediate-acid to basic. Based on the field evidences, the formation age of high-Nb basalt may be the latest. The Ar-Ar geochronology of altered secondary biotite, K-feldspar and sericite shows that the main mineralization lasting a interval of about 4 Ma, the duration limit of whole magma-hydrothermal evolution of about 6 Ma, and possibly such a long duration limit may result in the formation of Duobuza super-large copper deposit. Moreover, tectonic diagram and trace element geochemistry of volcanic rocks and diorite from Duobuza porphyry copper deposit confirm that it formed in a continental margin arc environment. Zircon U-Pb age of volcanic rocks and porphyry fall in the range of 105~121Ma, and Duobuza porphyry copper deposit locating in the north of the Bangonghu- Nujiang suture zone, suggested that Neo-Tethys ocean still subducted northward at least early Cretaceous, and its closure time should be later than 105 Ma. Three major inclusion types and ten subtypes are distinguished from quartz phenocrysts and various quartz veins. Vapor generally coexisting with brine inclusions, suggest that fluid boiling may be the main ore-forming mechanism. Raman spectrums of fluid inclusions display that the content of vapor and liquid inclusion mainly contain water, and vapor occasionally contain a little CO2. In addition, the component of liquid inclusions mainly include Cl-, SO42-, Na+, K+, a small amount of Ca2+, F-; and Cl- and Na+ show good correlation. Vapor mainly contains water, a small amount of CO2, CH4 and C2H6 and so on. The daughter minerals identified by Laman spectroscopy and SEM include gypsum, chalcopyrite, halite, sylvite, rutile, potassium feldspar, Fe-Mn-chloride and other minerals, and ore-forming fluid belong to a complex hydrothermal system containing H2O-NaCl-KClFeCl2CaCl2. H and O isotopic analysis of quartz phenocryst, vein quartz, magnetite, chlorite and gypsum from all alteration zones show that the ore-forming fluid of Duobuza gold-rich porphyry copper deposit consisted mainly of magmatic water, without addition of meteric water. Duobuza gold-rich porphyry copper deposit formed by the primary magmatic fluid (600-950C), which has high oxidation, ultra-high salinity and metallogenic element-rich, exsolution direct from the magma, and it is representative of the typical orthomagmatic end member of the porphyry continuum. Moreover, the fluid evolution model of Duobuza gold-rich porphyry copper deposit has been established. Furthermore, two key factors for formation of large Au-rich porphyry copper deposit have been summed up, which are ore-forming fluids earlier separated from magma and high oxidation magma-mineralization fluid system.
Resumo:
Cambrian-Ordovician dolostones in Tarim Basin are hydrocarbon reservoir rocks of vital importance. Under the guidance of the theories of sedimentology and the sedimentology of carbonate reservoir, based on the first-hand qualitative and quantitative data especially, combined with micro-study, geochemical and reservoir capacity analysis, and precursor research, the origin and reservoir characteristics of the dolostones were discussed. Based on detailed petrographic investigations, four types of dolostone have been recognized, which are, respecitively, mud-silt-sized dolostones, algal laminated dolostones (ALD), prophyritic dolostone, and neomorphic dolostone. Mud-silt-sized dolostones always presents as laminas together with evaporated signatures, its REE patterns and ΣREE are all close to that of the finely crystalline limestone. This kind of dolomite probably experienced relatively low fluid-rock ratio during diagenesis was formed in hypersaline and oxidizing environment and involved fast dolomitization process. It was dolomitized by evaporated seawater in sabkha environment.The main primary fabrics of algal lamination in algal laminated dolomite (ALD) can still be identified and its ΣREE (21.37) is very close to that of algae. This reveals that ALD was dolomitized during early diagenesis and algae possibly played an important role. The ALD was formed under mediation of organic matter and Mg2+ were supplied by magnesium concentrated algal laminites and sea water. Prophyritic dolostones presents mainly as patchy occurrence and yield the lowest δ13C and Z value. Its ΣREE is much less than that of the finely crystalline limestone. These characteristics reveal that the cloudy cores were dolomitized in shallow early diagenetic environments by pore fluids riched in Mg2+. Whereas the clear rims were likely formed in subsequent burial into deeper subsurface environments, and the Mg2+ needed for further dolomitization possibly was supplied by the transformations of clay minerals. Neomorphic dolostones consist of coarse, turbid crystals and exhibits sucrosic and mosaic textures. It has highest Fe2+ contents and average homogeneous temperature (110.2℃). Collectively, these characteristics demonstrate that the neomorphic dolostones was likely formed by recrystallization of pre-existing dolomites during deep burial. The ΣREE of the four types of dolostone distinctly differentiates from each other. However, their REE patterns are all enriched in LREE, depleted in HREE and have Eu negative anomalies. Its ΣREE 13.64 ppm, less than 1/4 of finely crystalline limestone, and ranks the lowest in the 4 types.These characteristics are comparable to those of finely crystalline limestone, and are mainly infuenced by the sea water. These four types of dolostone show similar REE mobility behaviour and no significant fractionation, althouth they have been subjected to evidently different diageneses. Seven main pore types are identified in the dolostones , which are fenestral, moldic, intercrystal, dissolved,breccia, dissolved breccia and stylolite pores. Fenestral pores are primary and the others are secondary. The dissolved pores and intercrystal pores are the most important reservoir spaces and followed by breccias and dissolved breccia pores, and the moldic and fenestral pores are less important. Stylolites can enhance permeability of reservoir rocks in one hand, for the other hand, the capacity of reservoir and permeability are enhanced and then better reservoir rocks can be formed when they are combined with patchy dolostones. The relationship between porosity and the type of dolostones is that the dissolved neomorphic dolostones have the highest porosity of 3.65%, than followed by dissolved Mud-silt-sized dolostones of 3.35%. The mud-silt-sized dolostones without dissolution have the lowest porosity of 0.90%. Moreover, the porosity of prophyritic dolostones and the neomorphic dolostones without dissolution are lower, respectively 1.675% and 1.41%. Although algal laminated dolostones consist of euhedral crystals and riched in intercrystal pores, its porosity just yields 1.20%. The relationship between permeability and the type of dolostones is that that algal laminated dolostones have the highest permeability of 0.462mD and followed by 0.065mD of prophyritic dolostones. Dissolution have no significant influence on the permeability of neomorphic dolostones and this presented by the permeability of dissolved and non-dissolved are very close, respectively 0.043mD and 0.062mD. No matter dissolved or not, mud-silt-sized dolostones are much less permeable. The permeability of non-dissolved and dissolved are 0.051mD and 0.016mD. Collectively, in the study area, neomorphic dolostones can form high quality reservoir.
Resumo:
Este artículo revisa la bibliografía existente sobre los problemas que la banda de colada continua, laminada en frío, presenta en su recristalización. Se examinan los impedimentos que presenta la precipitación de elementos de aleación o impurezas, previa o simultánea a la recristalización, para la nucleación de la recristalización y por tanto para ésta. Se explica el uso de las curvas TTT (Temperatura, Tiempo, Transformación) para la determinación de temperatura y velocidad de calentamiento críticas para llegar a la recristalización sin pasar por la zona de precipitación. Se explica también la obtención de curvas CTT (Concentración, Tiempo, Transformación) y "diagramas de tamaño de grano" para aleaciones Al-Mn en función de la velocidad de calentamiento y contenido de manganeso en solución sólida.
Resumo:
A simple experiment to demonstrate nucleophilic addition to a carbonyl. Sodium borohydride-mediated reduction of fluorenone is a fast and high-yielding reaction that is suitable for beginning students. Students isolate their fluorenol product by recrystallization and characterize it by NMR and IR.
Resumo:
The subambient behavior of aqueous mannitol solutions is of considerable relevance to the preparation of freeze dried formulations. In this investigation the properties of 3% w/v mannitol solutions were investigated using differential scanning calorimetry (DSC), cold stage microscopy (CSM), and X-ray diffraction (XRD) to identify the thermal transitions and structural transformations undergone by this system. It was found that on cooling from ambient the system formed ice at circa -20°C while a further exotherm was seen at approximately -30°C. Upon reheating an endotherm was seen at circa -30°C followed immediately by an exotherm at circa -25°C. Temperature cycling indicated that the thermal transitions observed upon reheating were not reversible. Modulated temperature DSC (MTDSC) indicated that the transitions observed upon reheating corresponded to a glass transition immediately followed by recrystallization, XRD data showed that recrystallization was into the ß form. Annealing at -35°C for 40 min prior to cooling and reheating resulted in a maximum enthalpy being observed for the reheating exotherm. It is concluded that on cooling 3% w/v aqueous mannitol solutions an amorphous phase is formed that subsequently recrystallises into the ß form. The study has also shown that DSC, CSM, and XRD are useful complementary techniques for the study of frozen systems
Resumo:
Antifreeze proteins (AFPs) are produced by a variety of organisms to either protect them from freezing or help them tolerate being frozen. Recent structural work has shown that AFPs bind to ice using ordered surface waters on a particular surface of the protein called the ice-binding site (IBS). These 'anchored clathrate' waters fuse to particular planes of an ice crystal and hence irreversibly bind the AFP to its ligand. An AFP isolated from the perennial ryegrass, Lolium perenne (LpAFP) was previously modelled as a right-handed beta helix with two proposed IBSs. Steric mutagenesis, where small side chains were replaced with larger ones, determined that only one of the putative IBSs was responsible for binding ice. The mutagenesis work also partly validated the fold of the computer-generated model of this AFP. In order to determine the structure of the protein, LpAFP was crystallized and solved to 1.4 Å resolution. The protein folds as an untwisted left-handed beta-helix, of opposite handedness to the model. The IBS identified by mutagenesis is remarkably flat, but less regular than the IBS of most other AFPs. Furthermore, several of the residues constituting the IBS are in multiple conformations. This irregularity may explain why LpAFP causes less thermal hysteresis than many other AFPs. Its imperfect IBS is also argued to be responsible for LpAFP's heightened ice-recrystallization inhibition activity. The structure of LpAFP is the first for a plant AFP and for a protein responsible for providing freeze tolerance rather than freeze resistance. To help understand what constitutes an IBS, a non-ice-binding homologue of type III AFP, sialic acid synthase (SAS), was engineered for ice binding. Point mutations were made to the germinal IBS of SAS to mimic key features seen in type III AFP. The crystal structures of some of the mutant proteins showed that the potential IBS became less charged and flatter as the mutations progressed, and ice affinity was gained. This proof-of-principle study highlights some of the difficulties in AFP engineering.
Resumo:
Purpose. The purpose of this study is to demonstrate the rational design and behaviour of the first dual mode optical and chemical prodrug, exemplified by an acetyl salicylic acid-based system. Methods. A cyclic 1,4-benzodioxinone prodrug was synthesised by reaction of 3,5-dimethoxybenzoin and acetyl salicoyl chloride with pyridine. After purification by column chromatography and recrystallization, characterization was achieved using infrared and NMR spectroscopies, mass spectrometry, elemental analysis and single crystal X-ray diffraction. Light-triggered drug liberation was characterised via UV-visible spectroscopy following low-power 365 nm irradiation for controlled times. Chemical drug liberation was characterised via UV-visible spectroscopy in pH 5.5 solution. Results. The synthetic method yielded pure prodrug, with full supporting characterisation. Light-triggered drug liberation proceeded at a rate of 8.30 10j2 sj1, while chemical, hydrolytic liberation proceeded independently at 1.89 10j3 sj1. The photochemical and hydrolytic reactions were both quantitative. Conclusions. This study demonstrates the first rational dual-mode optical and chemical prodrug, using acetyl salicylic acid as a model, acting as a paradigm for future dual-mode systems. Photochemical drug liberation proceeds 44 times faster than chemical liberation, suggesting potential use in drug-eluting medical devices where an additional burst of drug is required at the onset of infection.
Resumo:
Ionic liquids are often contaminated by colored impurities. These impurities can be problematic for spectroscopic studies or for monitoring organic reactions by UV/Vis spectroscopy. The effect of different purification methods on the optical quality of colored ionic liquids was studied and compared. Yellowish ionic liquids can partially be decolorized by treatment with active charcoal or by recrystallization. Our experiments show column liquid chromatography is not always a good technique to prepare spectrograde imidazolium halide ionic liquids. Colorless and UV-transparent ionic liquids were synthesized by a method that can exclude the need for further purification steps. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Solid molecular dispersions of bicalutamide (BL) and polyvinylpyrrolidone (PVP) were prepared by hot melt extrusion technology at drug-to-polymer ratios of 1:10, 2:10, and 3:10 (w/w). The solid-state properties of BL, physical mixtures of BL/PVP, and hot melt extrudates were characterized using differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), Raman, and Fourier transform infrared (FTIR) spectroscopy. Drug dissolution studies were subsequently conducted on hot melt extruded solid dispersions and physical mixtures. All hot melt extrudates had a single Tg between theTg of amorphous BL and PVP indicating miscibility of BL with PVP and the formation of solid molecular dispersions. PXRD con?rmed the presence of the amorphous form of BL within the extrudates. Conversely, PXRD patterns recorded for physical mixtures showed sharp bands characteristic of crystalline BL, whereas DSC traces had a distinct endotherm at 1968C corresponding to melting of crystalline BL. Further investigations using DSC con?rmed solid-state plasticization of PVP by amorphous BL and hence antiplasticization of amorphous BL by PVP. Experimentally observed Tg values of physical mixtures were shown to be signi?cantly higher than those calculated using the Gordon–Taylor equation suggesting the formation of strong intermolecular interactions between BL and PVP. FTIR and Raman spectroscopy were used to investigate these interactions and strongly suggested the presence of secondary interaction between PVP and BL within the hot melt extrudates. The drug dissolution properties of hot melt extrudates were enhanced signi?cantly in comparison to crystalline BL and physical mixtures. Moreover, the rate and extent of BL release were highly dependent on the amount of PVP present within the extrudate. Storage of the extrudates con?rmed the stability of amorphous BL for up to 12 months at 208C, 40% RH whereas stability was reduced under highly humid conditions (208C, 65% RH). Interestingly, BL recrystallization after storage under these conditions had no effect on the dissolution properties of the extrudates.
Resumo:
In this study, the dissolution properties of celecoxib (CX) solid dispersions manufactured from Eudragit 4155F and polyvinylpyrrolidone (PVP) were evaluated. Hot-melt extrusion (HME) technology was used to prepare amorphous solid dispersions of drug/polymer binary systems at different mass ratios. The drug concentrations achieved from the dissolution of PVP and Eudragit 4155F solid dispersions in phosphate buffer, pH 7.4 (PBS 7.4) were significantly greater than the equilibrium solubility of CX (1.58 µg/mL). The degree of supersaturation increased significantly as the polymer concentration within the solid dispersion increased. The maximum drug concentration achieved by PVP solid dispersions did not significantly exceed the apparent solubility of amorphous CX. The predominant mechanism for achieving supersaturated CX concentrations in PBS 7.4 was attributed to stabilization of amorphous CX during dissolution. Conversely, Eudragit 4155F solid dispersions showed significantly greater supersaturated drug solutions particularly at high polymer concentrations. For example, at a drug/polymer ratio of 1:9, a concentration of 100 µg/mL was achieved after 60 min that was stable (no evidence of drug recrystallization) for up to 72 h. This clearly identifies the potential of Eudragit 4155F to act as a solubilizing agent for CX. These findings were in good agreement with the results from solubility performed using PBS 7.4 in which Eudragit 4155F had been predissolved. In these tests, Eudragit 4155F significantly increased the equilibrium solubility of CX. Solution 1H NMR spectra were used to identify drug/polymer interactions. Deshielding of CX aromatic protons (H-1a and H-1b) containing the sulfonamide group occurred as a result of dissolution of Eudragit 4155F solid dispersions, whereas deshielding of H-1a protons and shielding of H-1b protons occurred as a result of the dissolution of PVP solid dispersions. In principle, it is reasonable to suggest that the different drug/polymer interactions observed give rise to the variation in dissolution observed for the two polymer/drug systems.
Resumo:
New air-stable ruthenium(II) complexes that contain the aryldiamine ligand [C6H3(CH2-NMe2)(2)-2,6](-) (NCN) are described. These complexes are [RuCl{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,6}(eta(6)-C10H14)] (2; C10H14 = p-cymene = C6H4Me-Pr-i-4), [Ru{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,6}(eta(5)-C5H5)(PPh3)] (5), and their isomeric forms [RuCl{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,4}(eta(6)-C10H14)] (3) and [Ru{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,4}(eta(5)-C5H5)(PPh3)] (6), respectively. Complex 2 has been prepared from the reaction of [Li(NCN)](2) with [RuCl2(eta(6)-C10H14)](2), whereas complex 5 has been prepared by the treatment of [RuCl{eta(3)-N,C,N-C6H3(CH2NMe2)(2)-2,6}(PPh3)] (4) with [Na(C5H5)](n). Both 2 and 5 are formally 18-electron ruthenium(II) complexes in which the monoanionic potentially tridentate coordinating ligand NCN is eta(2)-C,N-bonded, In solution (halocarbon solvent at room temperature or in aromatic solvents at elevated temperature), the intramolecular rearrangements of 2 and 5 afford complexes 3 and 6, respectively. This is a result of a shift of the metal-C-aryl bond from position-1 to position-3 on the aromatic ring of the NCN ligand. The mechanism of the isomerization is proposed to involve a sequence of intramolecular oxidative addition and reductive elimination reactions of both aromatic and aliphatic C-H bonds. This is based on results from deuterium labeling, spectroscopic studies, and some kinetic experiments. The mechanism is proposed to contain fully reversible steps in the case of 5, but a nonreversible step involving oxidative addition of a methyl NCH2-H bond in the case of 2. The solid-state structures of complexes 2, 3, 5, and 6 have been determined by single-crystal X-ray diffraction. A new dinuclear 1,4-phenylene-bridged bisruthenium(II) complex, [1,4-{RuCl(eta(6)-C10H14)}(2){C-6(CH2NMe2)(4)-2,3,5,6-C,N,C',N'}] (9) has also been prepared from the dianionic ligand [C-6(CH2NMe2)(4)-2,3,5,6](2-) (C2N4). The C2N4 ligand is in an eta(2)-C,N-eta(2)-C',N'-bis(bidentate) bonding mode. Compound 9 does not isomerize in solution (halocarbon solvent), presumably because of the absence of an accessible C-aryl-H bond. Complex 9 could not be isolated in an analytically pure form, probably because of its high sensitivity to air and very low solubility, which precludes recrystallization.
Resumo:
The use of hot-melt extrusion (HME) within the pharmaceutical industry is steadily increasing, due to its proven ability to efficiently manufacture novel products. The process has been utilized readily in the plastics industry for over a century and has been used to manufacture medical devices for several decades. The development of novel drugs with poor solubility and bioavailability brought the application of HME into the realm of drug-delivery systems. This has specifically been shown in the development of drug-delivery systems of both solid dosage forms and transdermal patches. HME involves the application of heat, pressure and agitation through an extrusion channel to mix materials together, and subsequently forcing them out through a die. Twin-screw extruders are most popular in solid dosage form development as it imparts both dispersive and distributive mixing. It blends materials while also imparting high shear to break-up particles and disperse them. HME extrusion has been shown to molecularly disperse poorly soluble drugs in a polymer carrier, increasing dissolution rates and bioavailability. The most common difficulty encountered in producing such dispersions is stabilization of amorphous drugs, which prevents them from recrystallization during storage. Pharmaceutical industrial suppliers, of both materials and equipment, have increased their development of equipment and chemicals for specific use with HME. Clearly, HME has been identified as an important and significant process to further enhance drug solubility and solid-dispersion production. © 2012 Future Science Ltd.