774 resultados para real world learning
Resumo:
Full paper presented at EC-TEL 2016
Resumo:
The world of work in the 21st century has been described by many as globalised (Peiperl & Jonsen, 2007; Levy, 2007; Bhagat, 2006; Czinkota & Ronkainen, 2005). Globalisation is generally understood as a greater awareness of the world as a whole; an integrated stage where the countries of the world are seen to be players on the one playing field. This notion is driven by a perception of the world as being occupied by global citizens who are affiliated not with the country in which they are born but whose loyalties lie with planet Earth. They strive to live and work with this focus foremost in their consciousness. Indeed, many of these global citizens will enjoy global careers during their lifetime whereby they work in more than one region of the world during the course of their employment. The present chapter will present a discussion on globalisation and its impact on the world of work, in particular the changes on particular demographic groups in both developed and developing economies. It will then discuss implications for workers and their careers, specifically focusing on changing relationships between workers and organisations and the need for individuals to maintain their competitive edge in the market place through an ongoing focus on relevant career management competencies.
Resumo:
In architecture courses, instilling a wider understanding of the industry specific representations practiced in the Building Industry is normally done under the auspices of Technology and Science subjects. Traditionally, building industry professionals communicated their design intentions using industry specific representations. Originally these mainly two dimensional representations such as plans, sections, elevations, schedules, etc. were produced manually, using a drawing board. Currently, this manual process has been digitised in the form of Computer Aided Design and Drafting (CADD) or ubiquitously simply CAD. While CAD has significant productivity and accuracy advantages over the earlier manual method, it still only produces industry specific representations of the design intent. Essentially, CAD is a digital version of the drawing board. The tool used for the production of these representations in industry is still mainly CAD. This is also the approach taken in most traditional university courses and mirrors the reality of the situation in the building industry. A successor to CAD, in the form of Building Information Modelling (BIM), is presently evolving in the Construction Industry. CAD is mostly a technical tool that conforms to existing industry practices. BIM on the other hand is revolutionary both as a technical tool and as an industry practice. Rather than producing representations of design intent, BIM produces an exact Virtual Prototype of any building that in an ideal situation is centrally stored and freely exchanged between the project team. Essentially, BIM builds any building twice: once in the virtual world, where any faults are resolved, and finally, in the real world. There is, however, no established model for learning through the use of this technology in Architecture courses. Queensland University of Technology (QUT), a tertiary institution that maintains close links with industry, recognises the importance of equipping their graduates with skills that are relevant to industry. BIM skills are currently in increasing demand throughout the construction industry through the evolution of construction industry practices. As such, during the second half of 2008, QUT 4th year architectural students were formally introduced for the first time to BIM, as both a technology and as an industry practice. This paper will outline the teaching team’s experiences and methodologies in offering a BIM unit (Architectural Technology and Science IV) at QUT for the first time and provide a description of the learning model. The paper will present the results of a survey on the learners’ perspectives of both BIM and their learning experiences as they learn about and through this technology.
Resumo:
Real-World Data Mining Applications generally do not end up with the creation of the models. The use of the model is the final purpose especially in prediction tasks. The problem arises when the model is built based on much more information than that the user can provide in using the model. As a result, the performance of model reduces drastically due to many missing attributes values. This paper develops a new learning system framework, called as User Query Based Learning System (UQBLS), for building data mining models best suitable for users use. We demonstrate its deployment in a real-world application of the lifetime prediction of metallic components in buildings
Resumo:
This paper deals with the problem of using the data mining models in a real-world situation where the user can not provide all the inputs with which the predictive model is built. A learning system framework, Query Based Learning System (QBLS), is developed for improving the performance of the predictive models in practice where not all inputs are available for querying to the system. The automatic feature selection algorithm called Query Based Feature Selection (QBFS) is developed for selecting features to obtain a balance between the relative minimum subset of features and the relative maximum classification accuracy. Performance of the QBLS system and the QBFS algorithm is successfully demonstrated with a real-world application
Resumo:
This chapter describes the use of collaborative learning as an approach to enhance English language learning by students from non-English speaking backgrounds. Communicative Language Teaching (CLT) principles were applied to two case studies, one comprising of undergraduate English as Foreign Language Learners in Turkey and the other involved English as Second Language learners in Australia. Social constructivism inspired communicative language teaching using collaborative learning activities such as team work, interactive peer-based learning, and iterative stages of learning matrix were incorporated to enhance students' learning outcomes. Data collected after the CLT intervention was made up of field notes, reflective logs and focus group interviews which revealed complementarities, as well as subtle differences between the two cases. The findings were summarized as learning dispositions; speaking fluency and confidence; learning diagnostics and completion deficiencies; task engagement, flow theory and higher order thinking skills; in addition to self efficacy and development of student identity. CLT has the potential to provide a more inclusive and dynamic education for diverse learners through vital outcomes and benefits which resonate with the real world.