934 resultados para random network coding
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
CaSnO3 and SrSnO3 alkaline earth stannate thin films were prepared by chemical solution deposition using the polymeric precursor method on various single crystal substrates (R- and C-sapphire and 100-SrTiO3) at different temperatures. The films were characterized by X-ray diffraction (θ-2θ, ω- and φ-scans), field emission scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy and photoluminescence. Epitaxial SrSnO3 and CaSnO 3 thin films were obtained on SrTiO3 with a high crystalline quality. The long-range symmetry promoted a short-range disorder which led to photoluminescence in the epitaxial films. In contrast, the films deposited on sapphire exhibited a random polycrystalline growth with no meaningful emission regardless of the substrate orientation. The network modifier (Ca or Sr) and the substrate (sapphire or SrTiO3) influenced the crystallization process and/or the microstructure. Higher is the tilts of the SnO6 octahedra, as in CaSnO3, higher is the crystallization temperature, which changed also the nucleation/grain growth process. © 2012 Elsevier Inc. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The design of a network is a solution to several engineering and science problems. Several network design problems are known to be NP-hard, and population-based metaheuristics like evolutionary algorithms (EAs) have been largely investigated for such problems. Such optimization methods simultaneously generate a large number of potential solutions to investigate the search space in breadth and, consequently, to avoid local optima. Obtaining a potential solution usually involves the construction and maintenance of several spanning trees, or more generally, spanning forests. To efficiently explore the search space, special data structures have been developed to provide operations that manipulate a set of spanning trees (population). For a tree with n nodes, the most efficient data structures available in the literature require time O(n) to generate a new spanning tree that modifies an existing one and to store the new solution. We propose a new data structure, called node-depth-degree representation (NDDR), and we demonstrate that using this encoding, generating a new spanning forest requires average time O(root n). Experiments with an EA based on NDDR applied to large-scale instances of the degree-constrained minimum spanning tree problem have shown that the implementation adds small constants and lower order terms to the theoretical bound.
Resumo:
Consider a communication system in which a transmitter equipment sends fixed-size packets of data at a uniform rate to a receiver equipment. Consider also that these equipments are connected by a packet-switched network, which introduces a random delay to each packet. Here we propose an adaptive clock recovery scheme able of synchronizing the frequencies and the phases of these devices, within specified limits of precision. This scheme for achieving frequency and phase synchronization is based on measurements of the packet arrival times at the receiver, which are used to control the dynamics of a digital phase-locked loop. The scheme performance is evaluated via numerical simulations performed by using realistic parameter values. (C) 2011 Elsevier By. All rights reserved.
Resumo:
Semisupervised learning is a machine learning approach that is able to employ both labeled and unlabeled samples in the training process. In this paper, we propose a semisupervised data classification model based on a combined random-preferential walk of particles in a network (graph) constructed from the input dataset. The particles of the same class cooperate among themselves, while the particles of different classes compete with each other to propagate class labels to the whole network. A rigorous model definition is provided via a nonlinear stochastic dynamical system and a mathematical analysis of its behavior is carried out. A numerical validation presented in this paper confirms the theoretical predictions. An interesting feature brought by the competitive-cooperative mechanism is that the proposed model can achieve good classification rates while exhibiting low computational complexity order in comparison to other network-based semisupervised algorithms. Computer simulations conducted on synthetic and real-world datasets reveal the effectiveness of the model.
Resumo:
Glasses in the system xGeO(2)-(1-x)NaPO3 (0 <= x <= 0.50) were prepared by conventional melting quenching and characterized by thermal analysis, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and P-31 nuclear magnetic resonance (MAS NMR) techniques. The deconvolution of the latter spectra was aided by homonuclear J-resolved and refocused INADEQUATE techniques. The combined analyses of P-31 MAS NMR and O-1s XPS lineshapes, taking charge and mass balance considerations into account, yield the detailed quantitative speciations of the phosphorus, germanium, and oxygen atoms and their respective connectivities. An internally consistent description is possible without invoking the formation of higher-coordinated germanium species in these glasses, in agreement with experimental evidence in the literature. The structure can be regarded, to a first approximation, as a network consisting of P-(2) and P-(3) tetrahedra linked via four-coordinate germanium. As implied by the appearance of P-(3) units, there is a moderate extent of network modifier sharing between phosphate and germanate network formers, as expressed by the formal melt reaction P-(2) + Ge-(4) -> P-(3) + Ge-(3). The equilibrium constant of this reaction is estimated as K = 0.52 +/- 0.11, indicating a preferential attraction of network modifier by the phosphorus component. These conclusions are qualitatively supported by Raman spectroscopy as well as P-31{Na-23} and P-31{Na-23} rotational echo double resonance (REDOR) NMR results. The combined interpretation of O-1s XPS and P-31 MAS NMR spectra shows further that there are clear deviations from a random connectivity scenario: heteroatomic P-O-Ge linkages are favored over homoatomic P-O-P and Ge-O-Ge linkages.
Resumo:
Abstract Background The mitochondrial DNA of kinetoplastid flagellates is distinctive in the eukaryotic world due to its massive size, complex form and large sequence content. Comprised of catenated maxicircles that contain rRNA and protein-coding genes and thousands of heterogeneous minicircles encoding small guide RNAs, the kinetoplast network has evolved along with an extreme form of mRNA processing in the form of uridine insertion and deletion RNA editing. Many maxicircle-encoded mRNAs cannot be translated without this post-transcriptional sequence modification. Results We present the complete sequence and annotation of the Trypanosoma cruzi maxicircles for the CL Brener and Esmeraldo strains. Gene order is syntenic with Trypanosoma brucei and Leishmania tarentolae maxicircles. The non-coding components have strain-specific repetitive regions and a variable region that is unique for each strain with the exception of a conserved sequence element that may serve as an origin of replication, but shows no sequence identity with L. tarentolae or T. brucei. Alternative assemblies of the variable region demonstrate intra-strain heterogeneity of the maxicircle population. The extent of mRNA editing required for particular genes approximates that seen in T. brucei. Extensively edited genes were more divergent among the genera than non-edited and rRNA genes. Esmeraldo contains a unique 236-bp deletion that removes the 5'-ends of ND4 and CR4 and the intergenic region. Esmeraldo shows additional insertions and deletions outside of areas edited in other species in ND5, MURF1, and MURF2, while CL Brener has a distinct insertion in MURF2. Conclusion The CL Brener and Esmeraldo maxicircles represent two of three previously defined maxicircle clades and promise utility as taxonomic markers. Restoration of the disrupted reading frames might be accomplished by strain-specific RNA editing. Elements in the non-coding region may be important for replication, transcription, and anchoring of the maxicircle within the kinetoplast network.
Resumo:
CaSnO3 and SrSnO3 alkaline earth stannate thin films were prepared by chemical solution deposition using the polymeric precursor method on various single crystal substrates (R- and C-sapphire and 100-SrTiO3) at different temperatures. The films were characterized by X-ray diffraction (θ-2θ, ω- and φ-scans), field emission scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy and photoluminescence. Epitaxial SrSnO3 and CaSnO3 thin films were obtained on SrTiO3 with a high crystalline quality. The long-range symmetry promoted a short-range disorder which led to photoluminescence in the epitaxial films. In contrast, the films deposited on sapphire exhibited a random polycrystalline growth with no meaningful emission regardless of the substrate orientation. The network modifier (Ca or Sr) and the substrate (sapphire or SrTiO3) influenced the crystallization process and/or the microstructure. Higher is the tilts of the SnO6 octahedra, as in CaSnO3, higher is the crystallization temperature, which changed also the nucleation/grain growth process.
Resumo:
Bacterial small regulatory RNAs (sRNAs) are posttranscriptional regulators involved in stress responses. These short non-coding transcripts are synthesised in response to a signal, and control gene expression of their regulons by modulating the translation or stability of the target mRNAs, often in concert with the RNA chaperone Hfq. Characterization of a Hfq knock out mutant in Neisseria meningitidis revealed that it has a pleiotropic phenotype, suggesting a major role for Hfq in adaptation to stresses and virulence and the presence of Hfq-dependent sRNA activity. Global gene expression analysis of regulated transcripts in the Hfq mutant revealed the presence of a regulated sRNA, incorrectly annotated as an open reading frame, which we renamed AniS. The synthesis of this novel sRNA is anaerobically induced through activation of its promoter by the FNR global regulator and through global gene expression analyses we identified at least two predicted mRNA targets of AniS. We also performed a detailed molecular analysis of the action of the sRNA NrrF,. We demonstrated that NrrF regulates succinate dehydrogenase by forming a duplex with a region of complementarity within the sdhDA region of the succinate dehydrogenase transcript, and Hfq enhances the binding of this sRNA to the identified target in the sdhCDAB mRNA; this is likely to result in rapid turnover of the transcript in vivo. In addition, in order to globally investigate other possible sRNAs of N. meningitdis we Deep-sequenced the transcriptome of this bacterium under both standard in vitro and iron-depleted conditions. This analysis revealed genes that were actively transcribed under the two conditions. We focused our attention on the transcribed non-coding regions of the genome and, along with 5’ and 3’ untranslated regions, 19 novel candidate sRNAs were identified. Further studies will be focused on the identification of the regulatory networks of these sRNAs, and their targets.
Resumo:
Questa Tesi aspira a mostrare un codice a livello di pacchetto, che abbia performance molto vicine a quello ottimo, per progetti di comunicazioni Satellitari. L’altro scopo di questa Tesi è quello di capire se rimane ancora molto più difficile maneggiare direttamente gli errori piuttosto che le erasures. Le applicazioni per comunicazioni satellitari ora come ora usano tutte packet erasure coding per codificare e decodificare l’informazione. La struttura dell’erasure decoding è molto semplice, perché abbiamo solamente bisogno di un Cyclic Redundancy Check (CRC) per realizzarla. Il problema nasce quando abbiamo pacchetti di dimensioni medie o piccole (per esempio più piccole di 100 bits) perché in queste situazioni il costo del CRC risulta essere troppo dispendioso. La soluzione la possiamo trovare utilizzando il Vector Symbol Decoding (VSD) per raggiungere le stesse performance degli erasure codes, ma senza la necessità di usare il CRC. Per prima cosa viene fatta una breve introduzione su come è nata e su come si è evoluta la codifica a livello di pacchetto. In seguito è stato introdotto il canale q-ary Symmetric Channel (qSC), con sia la derivazione della sua capacità che quella del suo Random Coding Bound (RCB). VSD è stato poi proposto con la speranza di superare in prestazioni il Verification Based Decoding (VBD) su il canale qSC. Infine, le effettive performance del VSD sono state stimate via simulazioni numeriche. I possibili miglioramenti delle performance, per quanto riguarda il VBD sono state discusse, come anche le possibili applicazioni future. Inoltre abbiamo anche risposto alla domande se è ancora così tanto più difficile maneggiare gli errori piuttosto che le erasure.
Resumo:
L'obiettivo della tesi è studiare la dinamica di un random walk su network. Essa è inoltre suddivisa in due parti: la prima è prettamente teorica, mentre la seconda analizza i risultati ottenuti mediante simulazioni. La parte teorica è caratterizzata dall'introduzione di concetti chiave per comprendere i random walk, come i processi di Markov e la Master Equation. Dopo aver fornito un esempio intuitivo di random walk nel caso unidimensionale, tale concetto viene generalizzato. Così può essere introdotta la Master Equation che determina l'evoluzione del sistema. Successivamente si illustrano i concetti di linearità e non linearità, fondamentali per la parte di simulazione. Nella seconda parte si studia il comportamento di un random walk su network nel caso lineare e non lineare, studiando le caratteristiche della soluzione stazionaria. La non linearità introdotta simula un comportamento egoista da parte di popolazioni in interazioni. In particolare si dimostra l'esistenza di una Biforcazione di Hopf.
Resumo:
L'obbiettivo di questa tesi è quello di studiare alcune proprietà statistiche di un random walk su network. Dopo aver definito il concetto di network e di random walk su network, sono state studiate le caratteristiche dello stato stazionario di questo sistema, la loro dipendenza dalla topologia della rete e l'andamento del sistema verso l'equilibrio, con particolare interesse per la distribuzione delle fluttuazioni delle popolazioni sui differenti nodi, una volta raggiunto lo stato stazionario. In seguito, si è voluto osservare il comportamento del network sottoposto ad una forzatura costante, rappresentata da sorgenti e pozzi applicati in diversi nodi, e quindi la sua suscettività a perturbazioni esterne. Tramite alcune simulazioni al computer, viene provato che una forzatura esterna modifica in modo diverso lo stato del network in base alla topologia di quest'ultimo. Dai risultati si è trovato quali sono i nodi che, una volta perturbati, sono in grado di cambiare ampiamente lo stato generale del sistema e quali lo influenzano in minima parte.
Resumo:
In this thesis we dealt with the problem of describing a transportation network in which the objects in movement were subject to both finite transportation capacity and finite accomodation capacity. The movements across such a system are realistically of a simultaneous nature which poses some challenges when formulating a mathematical description. We tried to derive such a general modellization from one posed on a simplified problem based on asyncronicity in particle transitions. We did so considering one-step processes based on the assumption that the system could be describable through discrete time Markov processes with finite state space. After describing the pre-established dynamics in terms of master equations we determined stationary states for the considered processes. Numerical simulations then led to the conclusion that a general system naturally evolves toward a congestion state when its particle transition simultaneously and we consider one single constraint in the form of network node capacity. Moreover the congested nodes of a system tend to be located in adjacent spots in the network, thus forming local clusters of congested nodes.
Resumo:
Whether the use of mobile phones is a risk factor for brain tumors in adolescents is currently being studied. Case--control studies investigating this possible relationship are prone to recall error and selection bias. We assessed the potential impact of random and systematic recall error and selection bias on odds ratios (ORs) by performing simulations based on real data from an ongoing case--control study of mobile phones and brain tumor risk in children and adolescents (CEFALO study). Simulations were conducted for two mobile phone exposure categories: regular and heavy use. Our choice of levels of recall error was guided by a validation study that compared objective network operator data with the self-reported amount of mobile phone use in CEFALO. In our validation study, cases overestimated their number of calls by 9% on average and controls by 34%. Cases also overestimated their duration of calls by 52% on average and controls by 163%. The participation rates in CEFALO were 83% for cases and 71% for controls. In a variety of scenarios, the combined impact of recall error and selection bias on the estimated ORs was complex. These simulations are useful for the interpretation of previous case-control studies on brain tumor and mobile phone use in adults as well as for the interpretation of future studies on adolescents.