971 resultados para radiation treatment margins


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioresorbable polymers have been widely investigated as materials exhibiting significant potential for successful application in the fields of tissue engineering and drug delivery. Further to the ability to control degradation, surface engineering of polymers has been highlighted as a key method central to their development. Previous work has demonstrated the ability of electron beam (e-beam) technology to control the degradation profiles and bioresorption of a number of commercially relevant bioresorbable polymers (poly-l-lactic acid (PLLA), Llactide/DL-lactide co-polymer (PLDL) and poly(lactic-co-glycolic acid (PLGA)). This work investigates the further potential of ebeam technology to impart added biofunctionality through the manipulation of polymer (PLLA) surface properties. PLLA samples were subjected to e-beam treatments in air, with varying beam energies and doses. Surface characterization was then performed using contact angle analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and atomic force microscopy. Results demonstrated a significant increase in surface wettability post e-beam treatment. In correlation with this, XPS data showed the introduction of oxygen-containing functional groups to the surface of PLLA. Raman spectroscopy indicated chain scission in the near surface region of PLLA (as predicted). However, e-beam effects on surface properties were not shown to be dependent on beam energy or dose. E-beam irradiation did not seem to affect the surface roughness of PLLA as a direct consequence of the treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to determine if Photodynamic Antimicrobial Chemotherapy (PACT) was effective in the treatment of Burkholderia cepacia complex infection and whether a synergistic effect was evident if PACT was used in combination with antibiotics. The susceptibility of both planktonic and biofilm cultures of B. cepacia complex strains to methylene blue (MB) and meso-tetra(n-methyl-4-pyridyl)porphine tetra-tosylate (TMP)-mediated PACT was determined alone and in combination with antibiotics used in the treatment of Cystic Fibrosis pulmonary infection caused by these bacteria. When B. cepacia complex strains were grown planktonically, high levels of kill of were achieved with both TMP and MB-mediated PACT with strain and photosensitizer specific differences apparent. When strains were grown in biofilm, antibiotic treatment alone was bactericidal in 17/36 (47%) strain/antibiotic combinations tested. When antibiotic treatment was combined with PACT, bactericidal activity was apparent for 33/36 (92%) strain/antibiotic combinations. No antagonism was detected between PACT and antibiotic treatment with the combination synergistic for 6/36 (17%) and indifferent for 30/36 (83%) strain/antibiotic combinations. PACT could be a viable treatment option, either alone or in combination with antibiotics for treatment of B. cepacia complex pulmonary infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to determine the out-of-field survival of cells irradiated with either the primary field or scattered radiation in the presence and absence of intercellular communication following delivery of conformal, IMRT and VMAT treatment plans. Single beam, conformal, IMRT and VMAT plans were created to deliver 3 Gy to half the area of a T80 flask containing either DU-145 or AGO-1522 cells allowing intercellular communication between the in-and out-of-field cell populations. The same plans were delivered to a similar custom made phantom used to hold two T25 culture flasks, one flask in-field and one out-of-field to allow comparison of cell survival responses when intercellular communication is physically inhibited. Plans were created for the delivery of 8 Gy to the more radio-resistant DU-145 cells only in the presence and absence of intercellular communication. Cell survival was determined by clonogenic assay. In both cell lines, the out-of-field survival was not statistically different between delivery techniques for either cell line or dose. There was however, a statistically significant difference between survival out-of-field when intercellular communication was intact (single T80 culture flask) or inhibited (multiple T25 culture flasks) to in-field for all plans. No statistically significant difference was observed in-field with or without cellular communication to out-of-field for all plans. These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields when cellular communication between differentially irradiated cell populations is present. This data is further evidence that refinement of existing radiobiological models to include indirect cell killing effects is required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the delivery of advanced radiotherapy treatment techniques modulated beams are utilised to increase dose conformity across the target volume. Recent investigations have highlighted differential cellular responses to modulated radiation fields particularly in areas outside the primary treatment field that cannot be accounted for by scattered dose alone. In the present study, we determined the DNA damage response within the normal human fibroblast AG0-1522B and the prostate cancer cell line DU-145 utilising the DNA damage assay. Cells plated in slide flasks were exposed to 1 Gy uniform or modulated radiation fields. Modulated fields were delivered by shielding 25%, 50% or 75% of the flask during irradiation. The average number of 53BP1 or ?H2AX foci was measured in 2 mm intervals across the slide area. Following 30 minutes after modulated radiation field exposure an increase in the average number of foci out-of-field was observed when compared to non-irradiated controls. In-field, a non-uniform response was observed with a significant decrease in the average number of foci compared to uniformly irradiated cells. Following 24 hrs after exposure there is evidence for two populations of responding cells to bystander signals in-and out-of-field. There was no significant difference in DNA damage response between 25%, 50% or 75% modulated fields. The response was dependent on cellular secreted intercellular signalling as physical inhibition of intercellular communication abrogated the observed response. Elevated residual DNA damage observed within out-of-field regions decreased following addition of an inducible nitric oxide synthase inhibitor (Aminoguanidine). These data show, for the first time, differential DNA damage responses in-and out-of-field following modulated radiation field delivery. This study provides further evidence for a role of intercellular communication in mediating cellular radiobiological response to modulated radiation fields and may inform the refinement of existing radiobiological models for the optimization of advanced radiotherapy treatment plans. © 2012 Trainor et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interpretation of supernova (SN) spectra is essential for deriving SN ejecta properties such as density and composition, which in turn can tell us about their progenitors and the explosion mechanism. A very large number of atomic processes are important for spectrum formation. Several tools for calculating SN spectra exist, but they mainly focus on the very early or late epochs. The intermediate phase, which requires a non-local thermodynamic equilibrium (NLTE) treatment of radiation transport has rarely been studied. In this paper, we present a new SN radiation transport code, nero, which can look at those epochs. All the atomic processes are treated in full NLTE, under a steady-state assumption. This is a valid approach between roughly 50 and 500days after the explosion depending on SN type. This covers the post-maximum photospheric and the early and the intermediate nebular phase. As a test, we compare nero to the radiation transport code of Jerkstrand, Fransson & Kozma and to the nebular code of Mazzali et al. All three codes have been developed independently and a comparison provides a valuable opportunity to investigate their reliability. Currently, nero is one-dimensional and can be used for predicting spectra of synthetic explosion models or for deriving SN properties by spectral modelling. To demonstrate this, we study the spectra of the 'normal' Type Ia supernova (SN Ia) 2005cf between 50 and 350 days after the explosion and identify most of the common SN Ia line features at post-maximum epochs. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation was designed to determine whether low dose radiation to the macular region could influence the natural course of age-related subfoveal neovascularisation. Nineteen patients with subfoveal membranes due to age-related macular degeneration (ARMD) were treated with 10 or 15 Gy of 6 MV photons and seven patients who declined treatment were followed up as controls. Six controls and all treated patients had completed follow up times of at least 12 months. Visual acuity was maintained or improved in 78% and 63% of treated patients at their 6 and 12 month follow up examinations respectively. By contrast visual acuity showed steady deterioration in six of seven controls. Significant neovascular membrane regression, as measured by image analysis, was recorded in 68% and 77% of treated patients at 6 and 12 months post-radiation, whereas the membranes in all seven control patients showed progressive enlargement. This study suggests that low doses of radiation can maintain central vision and induce regression of subfoveal neovascular membranes of ARMD in a significant proportion of patients. We now believe it appropriate to proceed to a prospective randomised study to test this hypothesis further.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review considers the effects of ionizing radiation on the retina and examines the relationship between the natural course of radiation retinopathy and the radiobiology of the retinal vascular endothelial cell (RVEC). Radiation retinopathy presents clinically as a progressive pattern of degenerative and proliferative vascular changes, chiefly affecting the macula, and ranging from capillary occlusion, dilation, and microaneurysm formation, to telangiectasia, intraretinal microvascular abnormalities, and neovascularization. The total-radiation dose and fractionation schedule are the major determinants for the time of onset, rate of progression, and severity of retinopathy, although other factors such as concomitant chemotherapy and preexisting diabetes may exaggerate the vasculopathy by intensifying the oxygen-derived free-radical assault on the vascular cells. The differential radiosensitivity of RVECs is attributed to their nuclear chromatin conformation, their antioxidant status, and their environment. We propose pathogenetic mechanisms for radiation retinopathy and suggest that the peculiar latency and unique clinical pattern is related to the life cycle of the RVEC. A rationale is also proposed for the use of radiotherapy in the treatment of subneovascularization and age-related macular degeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the clinical and histological side effects of a prototype stereotactic radiotherapy system delivering microcollimated external beam radiation through pars plana in porcine eyes.

Methods: Five Yucatan mini-swine (10 eyes) were randomized to five treatment groups. Eight eyes were dosed with X-ray radiation on Day 1, and two eyes served as untreated controls. Treated eyes received doses up to 60 Gy to the retina and up to 130 Gy to the sclera using single or overlapping beams. The treatment beams were highly collimated such that the diameter was approximately 2.5 mm on the sclera and 3 mm on the retinal surface. Fundus photography, fluorescein angiography (FA), and spectral domain optical coherence tomography (SD-OCT) were obtained on days 7, 30, 60, and 110. Images were examined by a masked grader and evaluated for abnormalities. Animals were sacrificed on day 111 and gross and histopathological analysis was conducted.

Results: Histological and gross changes to eye structures including conjunctiva and lens were minimal at all doses. Fundus, FA, and SD-OCT of the targeted region failed to disclose any abnormality in the control or 21 Gy treated animals. In the 42 and 60 Gy animals, hypopigmented spots were noted after treatment on clinical exam, and corresponding hyperfluorescent staining was seen in late frames. No evidence of choroidal hypoperfusion was seen. The histological specimens from the 60 Gy animals showed photoreceptor loss and displacement of cone nuclei.

Conclusion: Transcleral stereotactic radiation dosing in porcine eyes can be accomplished with no significant adverse events as doses less than 42 Gy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract
PURPOSE:
The optimal duration over which lung SBRT should be delivered is unknown. We conducted a randomized pilot study in patients treated with four fractions of lung SBRT delivered over 4 or over 11days.
METHODS:
Patients with a peripheral solitary lung tumor (NSCLC or pulmonary metastasis) ?5cm were eligible. For NSCLC lung tumors ?3cm, a dose of 48Gy in 4 fractions was used, otherwise 52Gy in 4 fractions was delivered. Patients were randomized to receive treatment over 4 consecutive days or over 11days. The primary end-point was acute grade ?2 toxicity. Secondary end-points included quality of life (QOL) assessed using the EORTC QLQ-C30 and QLQ-LC13 questionnaires.
RESULTS:
Fifty four patients were enrolled. More patients in the 11day group had respiratory symptoms at baseline. 55.6% patients treated over 4days and 33.3% of patients treated over 11days experienced acute grade ?2 toxicity (p=0.085). Dyspnea, fatigue and coughing domains were worse in the 11day group at baseline. At 1 and 4months, more patients in the 4day group experienced a clinically meaningful worsening in the dyspnea QOL domain compared to the 11day group (44.5% vs 15.4%, p=0.02; 38.5% vs 12.0%, p=0.03, respectively). However, raw QOL scores were not different at these time-points between treatment groups.
CONCLUSIONS:
Grade 2 or higher acute toxicity was more common in the 4day group, approaching statistical significance. More patients treated on 4 consecutive days reported a clinically meaningful increase in dyspnea, although interpretation of these results is challenging due to baseline imbalance between treatment groups. Larger studies are required to validate these results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose
Recent in vitro results have shown significant contributions to cell killing from signaling effects at doses that are typically used in radiation therapy. This study investigates whether these in vitro observations can be reconciled with in vivo knowledge and how signaling may have an impact on future developments in radiation therapy.
Methods and Materials
Prostate cancer treatment plans were generated for a series of 10 patients using 3-dimensional conformal therapy, intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy techniques. These plans were evaluated using mathematical models of survival following modulated radiation exposures that were developed from in vitro observations and incorporate the effects of intercellular signaling. The impact on dose-volume histograms and mean doses were evaluated by converting these survival levels into "signaling-adjusted doses" for comparison.
Results
Inclusion of intercellular communication leads to significant differences between the signalling-adjusted and physical doses across a large volume. Organs in low-dose regions near target volumes see the largest increases, with mean signaling-adjusted bladder doses increasing from 23 to 33 Gy in IMRT plans. By contrast, in high-dose regions, there is a small decrease in signaling-adjusted dose due to reduced contributions from neighboring cells, with planning target volume mean doses falling from 74 to 71 Gy in IMRT. Overall, however, the dose distributions remain broadly similar, and comparisons between the treatment modalities are largely unchanged whether physical or signaling-adjusted dose is compared. Conclusions Although incorporating cellular signaling significantly affects cell killing in low-dose regions and suggests a different interpretation for many phenomena, their effect in high-dose regions for typical planning techniques is comparatively small. This indicates that the significant signaling effects observed in vitro are not contradicted by comparison with clinical observations. Future investigations are needed to validate these effects in vivo and to quantify their ranges and potential impact on more advanced radiation therapy techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The dose delivery accuracy of 30 clinical step and shoot intensity modulated radiation therapy plans was investigated using the single integrated multileaf collimator controller of the Varian Truebeam linear accelerator (linac) (Varian Medical Systems, Palo Alto, CA) and compared with the dose delivery accuracy on a previous generation Varian 2100CD C-Series linac.

Methods and Materials: Ten prostate, 10 prostate and pelvic node, and 10 head-and-neck cases were investigated in this study. Dose delivery accuracy on each linac was assessed using Farmer ionization chamber point dose measurements, 2-dimensional planar ionization chamber array measurements, and the corresponding Varian dynamic log files. Absolute point dose measurements, fluence delivery accuracy, leaf position accuracy, and the overshoot effect were assessed for each plan.

Results: Absolute point dose delivery accuracy increased by 1.5% on the Truebeam compared with the 2100CD linac. No improvement in fluence delivery accuracy between the linacs, at a gamma criterion of 3%/3 mm was measured using the 2-dimensional ionization chamber array, with median (interquartile range) gamma passing rates of 98.99% (97.70%-99.72%) and 99.28% (98.26%-99.75%) for the Truebeam and 2100CD linacs, respectively. Varian log files also showed no improvement in fluence delivery between the linacs at 3%/3 mm, with median gamma passing rates of 99.97% (99.93%-99.99%) and 99.98% (99.94%-100%) for the Truebeam and 2100CD linacs, respectively. However, log files revealed improved leaf position accuracy and fluence delivery at 1%/1 mm criterion on the Truebeam (99.87%; 99.78%-99.94%) compared with the 2100CD linac (97.87%; 91.93%-99.49%). The overshoot effect, characterized on the 2100CD linac, was not observed on the Truebeam.

Conclusions: The integrated multileaf collimator controller on the Varian Truebeam improves clinical treatment delivery accuracy of step and shoot intensity modulated radiation therapy fields compared with delivery on a Varian C-series linac. © 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The aim of this work was to determine if volumetric modulated arc therapy (VMAT) plans, created for constant dose-rate (cdrVMAT) delivery are a viable alternative to step and shoot five-field intensity modulated radiation therapy (IMRT). Materials and methods: The cdrVMAT plans, inverse planned on a treatment planning system with no solution to account for couch top or rails, were created for delivery on a linear accelerator with no variable dose rate control system. A series of five-field IMRT and cdrVMAT plans were created using dual partial arcs (gantry rotating between 260° and 100°) with 4° control points for ten prostate patients with the average rectal constraint incrementally increased. Pareto fronts were compared for the planning target volume homogeneity and average rectal dose between the two techniques for each patient. Also investigated were tumour control probability and normal tissue complication probability values for each technique. The delivery parameters [monitor units (MU) and time] and delivery accuracy of the IMRT and VMAT plans were also compared. Results: Pareto fronts showed that the dual partial arc plans were superior to the five-field IMRT plans, particularly for the clinically acceptable plans where average rectal doses were less for rotational plans (p = 0·009) with no statistical difference in target homogeneity. The cdrVMAT plans had significantly more MU (p = 0·005) but the average delivery time was significantly less than the IMRT plans by 42%. All clinically acceptable cdrVMAT plans were accurate in their delivery (gamma 99·2 ± 1·1%, 3%3 mm criteria). Conclusions Accurate delivery of dual partial arc cdrVMAT avoiding the couch top and rails has been demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is the protocol for a review and there is no abstract. The objectives are as follows:

The primary objective of this review is to evaluate the effects of non-pharmacological interventions among cancer patients targeted at maintaining cognitive function or ameliorating cognitive impairment as a result of cancer or receipt of systemic cancer treatment (i.e. chemotherapy or hormonal therapies in isolation or combination with other treatments). Patients who have received treatments such as cranial radiation for central nervous system tumours or metastases are not the focus of this review and will be excluded.

A second objective is to evaluate the effectiveness of non-pharmacological interventions for improving non-cognitive outcomes e.g. quality of life among this population.

Thirdly, we will extract and analyse data regarding the duration of intervention effects.

Fourthly, we will examine each study to identify safety as an outcome and incorporate information on intervention safety where possible. Evidence for the review will be based on data from randomised trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To determine differences in overall tumor responses measured by volumetric assessment and bioluminescence imaging (BLI) following exposure to uniform and non-uniform radiation fields in an ectopic prostate tumor model.

Materials and methods: Bioluminescent human prostate tumor xenografts were established by subcutaneous implantation into male mice. Tumors were irradiated with uniform or non-uniform field configurations using conventional in vivo irradiation procedures performed using a 225 kVp generator with custom lead shielding. Tumor responses were measured using Vernier calipers and by BLI using an in vivo imaging system. Survival was defined as the time to quadroupling of pre-treatment tumor volume. 

Results: The correlation between BLI and tumor volume measurements was found to be different for un-irradiated (R = 0.61), uniformly irradiated (R = 0.34) and partially irradiated (R = 0.30) tumors. Uniformly irradiated tumors resulted in an average tumor growth delay of 60 days with median survival of 75 days, compared to partially irradiated tumors which showed an average growth delay of 24 days and median survival of 38 days. 

Conclusions: Correlation between BLI and tumor volume measurements is lower for partially irradiated tumors than those exposed to uniform dose distributions. The response of partially irradiated tumors suggests non-uniformity in response beyond physical dose distribution within the target volume. Dosimetric uncertainty associated with conventional in vivo irradiation procedures prohibits their ability to accurately determine tumor response to non-uniform radiation fields and stresses the need for image guided small animal radiation research platforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiotherapy is an important treatment option for many human cancers. Current research is investigating the use of molecular targeted drugs in order to improve responses to radiotherapy in various cancers. The cellular response to irradiation is driven by both direct DNA damage in the targeted cell and intercellular signalling leading to a broad range of bystander effects. This study aims to elucidate radiation-induced DNA damage response signalling in bystander cells and to identify potential molecular targets to modulate the radiation induced bystander response in a therapeutic setting. Stalled replication forks in T98G bystander cells were visualised via bromodeoxyuridine (BrdU) nuclear foci detection at sites of single stranded DNA. γH2AX co-localised with these BrdU foci. BRCA1 and FANCD2 foci formed in T98G bystander cells. Using ATR mutant F02-98 hTERT and ATM deficient GM05849 fibroblasts it could be shown that ATR but not ATM was required for the recruitment of FANCD2 to sites of replication associated DNA damage in bystander cells whereas BRCA1 bystander foci were ATM-dependent. Phospho-Chk1 foci formation was observed in T98G bystander cells. Clonogenic survival assays showed moderate radiosensitisation of directly irradiated cells by the Chk1 inhibitor UCN-01 but increased radioresistance of bystander cells. This study identifies BRCA1, FANCD2 and Chk1 as potential targets for the modulation of radiation response in bystander cells. It adds to our understanding of the key molecular events propagating out-of-field effects of radiation and provides a rationale for the development of novel molecular targeted drugs for radiotherapy optimisation.