988 resultados para quantum-classical correspondence
Resumo:
A new formulation of potential scattering in quantum mechanics is developed using a close structural analogy between partial waves and the classical dynamics of many non-interacting fields. Using a canonical formalism we find nonlinear first-order differential equations for the low-energy scattering parameters such as scattering length and effective range. They significantly simplify typical calculations, as we illustrate for atom-atom and neutron-nucleus scattering systems. A generalization to charged particle scattering is also possible.
Resumo:
We revisit the problem of an otherwise classical particle immersed in the zero-point radiation field, with the purpose of tracing the origin of the nonlocality characteristic of Schrodinger`s equation. The Fokker-Planck-type equation in the particles phase-space leads to an infinite hierarchy of equations in configuration space. In the radiationless limit the first two equations decouple from the rest. The first is the continuity equation: the second one, for the particle flux, contains a nonlocal term due to the momentum fluctuations impressed by the field. These equations are shown to lead to Schrodinger`s equation. Nonlocality (obtained here for the one-particle system) appears thus as a property of the description, not of Nature. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
It is known that the actions of field theories on a noncommutative space-time can be written as some modified (we call them theta-modified) classical actions already on the commutative space-time (introducing a star product). Then the quantization of such modified actions reproduces both space-time noncommutativity and the usual quantum mechanical features of the corresponding field theory. In the present article, we discuss the problem of constructing theta-modified actions for relativistic QM. We construct such actions for relativistic spinless and spinning particles. The key idea is to extract theta-modified actions of the relativistic particles from path-integral representations of the corresponding noncommutative field theory propagators. We consider the Klein-Gordon and Dirac equations for the causal propagators in such theories. Then we construct for the propagators path-integral representations. Effective actions in such representations we treat as theta-modified actions of the relativistic particles. To confirm the interpretation, we canonically quantize these actions. Thus, we obtain the Klein-Gordon and Dirac equations in the noncommutative field theories. The theta-modified action of the relativistic spinning particle is just a generalization of the Berezin-Marinov pseudoclassical action for the noncommutative case.
Resumo:
We study the canonical and the coherent state quantizations of a particle moving in a magnetic field on the non-commutative plane. Using a theta-modified action, we perform the canonical quantization and analyze the gauge dependence of the theory. We compare coherent states quantizations obtained through Malkin-Man`ko states and circular squeezed states. The relation between these states and the ""classical"" trajectories is investigated, and we present numerical explorations of some semiclassical quantities. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, rotating strings in three directions of AdS(4) x CP(3) geometry are studied; its divergent energy limit, and conserved charges are also determined. An interpretation of these configurations as either giant magnons or spiky strings is discussed.
Resumo:
The sigma model describing the dynamics of the superstring in the AdS(5) x S(5) background can be constructed using the coset PSU(2, 2 vertical bar 4)/SO(4, 1) x SO(5). A basic set of operators in this two dimensional conformal field theory is composed by the left invariant currents. Since these currents are not (anti) holomorphic, their OPE`s is not determined by symmetry principles and its computation should be performed perturbatively. Using the pure spinor sigma model for this background, we compute the one-loop correction to these OPE`s. We also compute the OPE`s of the left invariant currents with the energy momentum tensor at tree level and one loop.
Resumo:
As a laboratory for loop quantum gravity, we consider the canonical quantization of the three-dimensional Chern-Simons theory on a noncompact space with the topology of a cylinder. Working within the loop quantization formalism, we define at the quantum level the constraints appearing in the canonical approach and completely solve them, thus constructing a gauge and diffeomorphism invariant physical Hilbert space for the theory. This space turns out to be infinite dimensional, but separable.
Resumo:
We propose a simple quantum field theoretical toy model for black-hole evaporation and study the backreaction of Hawking radiation onto the classical background. It turns out that the horizon is also pushed back in this situation (i.e., the interior region shrinks) though this backreaction is not caused by energy conservation but by momentum balance. The effective heat capacity and induced entropy variation can have both signs-depending on the parameters of the model.
Resumo:
A submodel of the so-called conformal affine Toda model coupled to the matter field (CATM) is defined such that its real Lagrangian has a positive-definite kinetic term for the Toda field and a usual kinetic term for the (Dirac) spinor field. After spontaneously broken the conformal symmetry by means of BRST analysis, we end up with an effective theory, the off-critical affine Toda model coupled to the matter (ATM). It is shown that the ATM model inherits the remarkable properties of the general CATM model such as the soliton solutions, the particle/soliton correspondence and the equivalence between the Noether and topological currents. The classical solitonic spectrum of the ATM model is also discussed. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Following the discussion-in state-space language-presented in a preceding paper, we work on the passage from the phase-space description of a degree of freedom described by a finite number of states (without classical counterpart) to one described by an infinite (and continuously labelled) number of states. With this it is possible to relate an original Schwinger idea to the Pegg-Barnett approach to the phase problem. In phase-space language, this discussion shows that one can obtain the Weyl-Wigner formalism, for both Cartesian and angular coordinates, as limiting elements of the discrete phase-space formalism.
Resumo:
It is proven that the classical pure spinor superstring in an AdS(5) X S-5 background has a flat current depending on a continuous parameter. This generalizes the recent result of Bena, et at. for the classical Green-Schwarz superstring.
Time evolution of the Wigner function in discrete quantum phase space for a soluble quasi-spin model
Resumo:
The discrete phase space approach to quantum mechanics of degrees of freedom without classical counterparts is applied to the many-fermions/quasi-spin Lipkin model. The Wi:ner function is written for some chosen states associated to discrete angle and angular momentum variables, and the rime evolution is numerically calculated using the discrete von Neumnnn-Liouville equation. Direct evidences in the lime evolution of the Wigner function are extracted that identify a tunnelling effect. A connection with a SU(2)-based semiclassical continuous approach to the Lipkin model is also presented.
Resumo:
We calculate the gravitational deflection of massive particles moving with relativistic velocity in the solar system to second post-Newtonian order. For a particle passing close to the Sun with impact parameter b, the deflection in classical general relativity is Phi(C)[GRAPHICS]where v(0) is the particle speed at infinity and M is the Sun's mass. We compute afterwards the gravitational deflection of a spinless neutral particle of mass m in the same static gravitational field as above, treated now as an external field. For a scalar boson with energy E, the deflection in semiclassical general relativity (SGR) is Phisc[GRAPHICS]This result shows that the propagation of the =2E spinless massive boson produces inexorably dispersive effects. It also shows that the semiclassical prediction is always greater than the geometrical one, no matter what the boson mass is. In addition, it is found that SGR predicts a deflection angle of similar to2.6 arcsec for a nonrelativistic spinless massive boson passing at the Sun's limb.
Resumo:
A semi-classical approach is used to obtain Lorentz covariant expressions for the form factors between the kink states of a quantum field theory with degenerate vacua. Implemented on a cylinder geometry it provides an estimate of the spectral representation of correlation functions in a finite volume. Illustrative examples of the applicability of the method are provided by the sine-Gordon and the broken phi(4) theories in 1 + 1 dimensions. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A non-integrable phase-factor global approach to gravitation is developed by using the similarity of teleparallel gravity to electromagnetism. The phase shifts of both the COW and the gravitational Aharonov-Bohm effects are obtained. It is then shown, by considering a simple slit experiment, that in the classical limit the global approach yields the same result as the gravitational Lorentz force equation of teleparallel gravity. It represents, therefore, the quantum mechanical version of the classical description provided by the gravitational Lorentz force equation. As teleparallel gravity can be formulated independently of the equivalence principle, it will consequently require no generalization of this principle at the quantum level.