986 resultados para quantum mechanical


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantum mechanical calculations at the B3LYP theory level, together with the 6-31G* basis set, were employed to obtain the energy, ionization potential, and polarizabilites for dipyridamole and derivatives, which are compared with their biological activity. Density functional calculations of the spin densities were performed for radical formed by electron abstraction of dipyridamole and derivatives. The unpaired electron remains in dipyridamole is localized on the nitrogen atoms in the substituent positions 1, 3, 5, 7, 11, 12, 13, 14, with participation of the 9 and 10 carbons in the pyrimido-pyrimidine ring. The antioxidant activity is related with ionization potential, polarizability and Log P.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper the behavior of matter waves in suddenly terminated potential structures is investigated numerically. It is shown that there is no difference between a fully quantum mechanical treatment and a semiclassical one with regards to energy redistribution. For the quantum case it is demonstrated that there can be substantial reflection at the termination. The neglect of backscattering by the semiclassical method brings about major differences in the case of low kinetic energies. A simple phenomenological model is shown to partially explain the observed backscattering using dynamics of reduced dimensionality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Currently, computational methods have been increasingly used to aid in the characterization of molecular biological systems, especially when they relevant to human health. Ibuprofen is a nonsteroidal antiinflammatory or broadband use in the clinic. Once in the bloodstream, most of ibuprofen is linked to human serum albumin, the major protein of blood plasma, decreasing its bioavailability and requiring larger doses to produce its antiinflamatory action. This study aimes to characterize, through the interaction energy, how is the binding of ibuprofen to albumin and to establish what are the main amino acids and molecular interactions involved in the process. For this purpouse, it was conducted an in silico study, by using quantum mechanical calculations based on Density Functional Theory (DFT), with Generalized Gradient approximation (GGA) to describe the effects of exchange and correlation. The interaction energy of each amino acid belonging to the binding site to the ligand was calculated the using the method of molecular fragmentation with conjugated caps (MFCC). Besides energy, we calculated the distances, types of molecular interactions and atomic groups involved. The theoretical models used were satisfactory and show a more accurate description when the dielectric constant ε = 40 was used. The findings corroborate the literature in which the Sudlow site I (I-FA3) is the primary binding site and the site I-FA6 as secondary site. However, it differs in identifying the most important amino acids, which by interaction energy, in order of decreasing energy, are: Arg410, Lys414, Ser 489, Leu453 and Tyr411 to the I-Site FA3 and Leu481, Ser480, Lys351, Val482 and Arg209 to the site I-FA6. The quantification of interaction energy and description of the most important amino acids opens new avenues for studies aiming at manipulating the structure of ibuprofen, in order to decrease its interaction with albumin, and consequently increase its distribution

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fixation of CO2 is one of the most important priorities of the scientific community dedicated to reduce global warming. In this work, we propose new methods for the fixation of CO2 using the guanidine bases tetramethylguanidine (TMG) and 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]-pyrimidine (TBD). In order to understand the reactions occurring during the CO2 fixation and release processes, we employed several experimental methods, including solution and solid-state NMR, FTIR, and coupled TGA-FTIR. Quantum mechanical NMR calculations were also carried out. Based on the results obtained, we concluded that CO2 fixation with both TMG and TBD guanidines is a kinetically reversible process, and the corresponding fixation products have proved to be useful as transcarboxylating compounds. Afterward, CO2 thermal releasing from this fixation product with TBD was found to be an interesting process for CO2 capture and isolation purposes. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A strong greenish-light photoluminescence (PL) emission was measured at room temperature for disordered and ordered powders of CaMoO4 prepared by the polymeric precursor method. The structural evolution from disordered to ordered powders was accompanied by XRD. Raman spectroscopy, and TEM imagery. High-level quantum mechanical calculations in the density functional framework were used to interpret the formation of the structural defects of disorder powders in terms of band diagram and density of states. Complex cluster vacancies [MoO3 center dot V-O(z)] and [CaO7 center dot V-O(z)] (where V-O(z) = V-O(X), V-O(center dot), V-O(center dot center dot)) were suggested to be responsible to the appearance of new states shallow and deeply inserted in the band gap. These defects give rise to the PL in disordered powders. The natural PL emission of ordered CaMoO4 was attributed to an intrinsic slight distortion of the [MoO4] tetrahedral in the short range.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Direct muon transfer in low-energy collisions of the muonic hydrogen H-mu and helium (He++) is considered in a three-body quantum-mechanical framework of coordinate-space integro-differential Faddeev-Hahn-type equations within two- and six-state close coupling approximations. The final-state Coulomb interaction is treated without any approximation employing appropriate Coulomb waves in the final state. This procedure of treating Coulomb interaction leads to much improved results for low-energy transfer rates. The present results agree reasonably well with previous semiclassical calculations. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The low-energy scattering of ortho positronium (Ps) by ortho Ps has been studied in a full quantum mechanical coupled-channel approach. In the singlet channel (total spin s(T) = 0) we find S- and P-wave resonances at 3.35 eV (width 0.02 eV) and 5.05 eV (width 0.04 eV), respectively, and a binding of 0.43 eV of Ps(2). The scattering length for s(T) = 0 is 3.95 Angstrom and for s(T) = 2 is 0.83 Angstrom. The small s(T) = 2 scattering length makes the spin-polarized ortho Ps atoms an almost noninteracting ideal gas which may undergo Bose-Einstein condensation. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider the problem of a harmonic oscillator coupled to a scalar field in the framework of recently introduced dressed coordinates. We compute all the probabilities associated with the decay process of an excited level of the oscillator. Instead of doing direct quantum mechanical calculations we establish some sum rules from which we infer the probabilities associated to the different decay processes of the oscillator. Thus, the sum rules allows to show that the transition probabilities between excited levels follow a binomial distribution. (c) 2005 Published by Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The semiclassical limit of quantum mechanical scattering in two dimensions is developed and the Wentzel-Kramers-Brillouin and eikonal results for two-dimensional scattering is derived. No backward or forward glory scattering is present in two dimensions. Other phenomena, such as rainbows and orbiting, do occur. (C) 2008 American Association of Physics Teachers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intense and broad visible photoluminescent (PL) band was observed at room temperature in structurally disordered PbZr0.53Ti0.47O3 powders. The lead zirconate titanate PbZr0.53Ti0.47O3 powders prepared by the polymeric precursor method and heat treated at different temperatures were structurally characterized at long range by means of X-ray diffraction. The PL was measured at room temperature samples heat treated at different temperatures. Experimental measurements and quantum-mechanical calculations showed that the high structural order and the high structural disorder in PbZr0.53Ti0.47O3 lattice are not favorable to the intense PL emission. Only samples containing simultaneous structural order and disorder in their lattice present the intense visible PL emission at room temperature. (C) 2007 Published by Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Disordered and crystalline Ba0.45Sr0.55TiO3 (BST) powder processed at low temperature was synthesized by the polymeric precursor method. The single-phase perovskite structure of the ceramics was identified by the Raman and X-ray diffraction techniques. Photoluminescence at room temperature was observed only in a disordered BST sample. Increasing the calcination time intensified the photoluminescence (PL), which reached its maximum value in the sample heat treated at 300 degrees C for 30 h. This emission may be correlated with the structural disorder. Periodic ab initio quantum-mechanical calculations using the CRYSTAL98 program can yield important information regarding the electronic and structural properties of crystalline and disordered solids. The experimental and theoretical results indicate the presence of intermediary energy levels in the band gap. This is ascribed to the break in symmetry, which is responsible for visible photoluminescence in the material's disordered state at room temperature. (c) 2005 Elsevier B.V. All rights reserved.