981 resultados para purified protein derivative


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulator of G-protein signalling (RGS) proteins negatively regulate heterotrimeric G-protein signalling through their conserved RGS domains. RGS domains act as GTPase-activating proteins, accelerating the GTP hydrolysis rate of the activated form of Gα-subunits. Although omnipresent in eukaryotes, RGS proteins have not been adequately analysed in non-mammalian organisms. The Drosophila melanogaster Gαo-subunit and the RGS domain of its interacting partner CG5036 have been overproduced and purified; the crystallization of the complex of the two proteins using PEG 4000 as a crystallizing agent and preliminary X-ray crystallographic analysis are reported. Diffraction data were collected to 2.0 Å resolution using a synchrotron-radiation source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pseudomonas aeruginosa, when deprived of oxygen, generates ATP from arginine catabolism by enzymes of the arginine deiminase pathway, encoded by the arcDABC operon. Under conditions of low oxygen tension, the transcriptional activator ANR binds to a site centered 41.5 bp upstream of the arcD transcriptional start. ANR-mediated anaerobic induction was enhanced two- to threefold by extracellular arginine. This arginine effect depended, in trans, on the transcriptional regulator ArgR and, in cis, on an ArgR binding site centered at -73.5 bp in the arcD promoter. Binding of purified ArgR protein to this site was demonstrated by electrophoretic mobility shift assays and DNase I footprinting. This ArgR recognition site contained a sequence, 5'-TGACGC-3', which deviated in only 1 base from the common sequence motif 5'-TGTCGC-3' found in other ArgR binding sites of P. aeruginosa. Furthermore, an alignment of all known ArgR binding sites confirmed that they consist of two directly repeated half-sites. In the absence of ANR, arginine did not induce the arc operon, suggesting that ArgR alone does not activate the arcD promoter. According to a model proposed, ArgR makes physical contact with ANR and thereby facilitates initiation of arc transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We purified from activated T lymphocytes a novel, highly conserved, 116-kDa, intracellular protein that occurred at high levels in the large, dividing cells of the thymus, was up-regulated when resting T or B lymphocytes or hemopoietic progenitors were activated, and was down-regulated when a monocytic leukemia, M1, was induced to differentiate. Expression of the protein was highest in the thymus and spleen and lowest in tissues with a low proportion of dividing cells such as kidney or muscle, although expression was high in the brain. The protein was localized to the cytosol and was phosphorylated, which is consistent with a previous report that the Xenopus laevis ortholog was phosphorylated by a mitotically activated kinase (1 ). The cDNA was previously mischaracterized as encoding p137, a 137-kDa GPI-linked membrane protein (2 ). We propose that the authentic protein encoded by this cDNA be called cytoplasmic activation/proliferation-associated protein-1 (caprin-1), and show that it is the prototype of a novel family of proteins characterized by two novel protein domains, termed homology regions-1 and -2 (HR-1, HR-2). Although we have found evidence for caprins only in urochordates and vertebrates, two insect proteins exhibit well-conserved HR-1 domains. The HR-1 and HR-2 domains have no known function, although the HR-1 of caprin-1 appeared necessary for formation of multimeric complexes of caprin-1. Overexpression of a fusion protein of enhanced green fluorescent protein and caprin-1 induced a specific, dose-dependent suppression of the proliferation of NIH-3T3 cells, consistent with the notion that caprin-1 plays a role in cellular activation or proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the immunogenicity and the conformational properties of the non-repetitive sequences of the Plasmodium falciparum circumsporozoite (CS) protein. Two polypeptides of 104 and 102 amino acids long, covering, respectively, the N- and C-terminal regions of the CS protein, were synthesized using solid phase Fmoc chemistry. The crude polypeptides were purified by a combination of size exclusion chromatography and RP-HPLC. Sera of mice immunized with the free polypeptides emulsified in incomplete Freund's adjuvant strongly reacted with the synthetic polypeptides as well as with native CS protein as judged by ELISA and IFAT assays. Most importantly, these antisera inhibited the sporozoite invasion of hepatoma cells. In addition, sera derived from donors living in a malaria endemic area recognized the CS 104- and 102-mers. Conformational studies of the CS polypeptides were also performed by circular dichroism spectroscopy showing the presence of a weakly ordered structure that can be increased by addition of trifluoroethanol. The obtained results indicate that the synthetic CS polypeptides and the natural CS protein share some common antigenic determinants and probably have similar conformation. The approach used in this study might be useful for the development of a synthetic malaria vaccine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The RAD52 epistasis group was identified in yeast as a group of genes required to repair DNA damaged by ionizing radiation [1]. Genetic evidence indicates that Rad52 functions in Rad51-dependent and Rad51-independent recombination pathways [2] [3] [4]. Consistent with this, purified yeast and human Rad52 proteins have been shown to promote single-strand DNA annealing [5] [6] [7] and to stimulate Rad51-mediated homologous pairing [8] [9] [10] [11]. Electron microscopic examinations of the yeast [12] and human [13] Rad52 proteins have revealed their assembly into ring-like structures in vitro. Using both conventional transmission electron microscopy and scanning transmission electron microscopy (STEM), we found that the human Rad52 protein forms heptameric rings. A three-dimensional (3D) reconstruction revealed that the heptamer has a large central channel. Like the hexameric helicases such as Escherichia coli DnaB [14] [15], bacteriophage T7 gp4b [16] [17], simian virus 40 (SV40) large T antigen [18] and papilloma virus E1 [19], the Rad52 rings show a distinctly chiral arrangement of subunits. Thus, the structures formed by the hexameric helicases may be a more general property of other proteins involved in DNA metabolism, including those, such as Rad52, that do not bind and hydrolyze ATP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial transcription activators of the XylR/DmpR subfamily exert their expression control via σ(54)-dependent RNA polymerase upon stimulation by a chemical effector, typically an aromatic compound. Where the chemical effector interacts with the transcription regulator protein to achieve activation is still largely unknown. Here we focus on the HbpR protein from Pseudomonas azelaica, which is a member of the XylR/DmpR subfamily and responds to biaromatic effectors such as 2-hydroxybiphenyl. We use protein structure modeling to predict folding of the effector recognition domain of HbpR and molecular docking to identify the region where 2-hydroxybiphenyl may interact with HbpR. A large number of site-directed HbpR mutants of residues in- and outside the predicted interaction area was created and their potential to induce reporter gene expression in Escherichia coli from the cognate P(C) promoter upon activation with 2-hydroxybiphenyl was studied. Mutant proteins were purified to study their conformation. Critical residues for effector stimulation indeed grouped near the predicted area, some of which are conserved among XylR/DmpR subfamily members in spite of displaying different effector specificities. This suggests that they are important for the process of effector activation, but not necessarily for effector specificity recognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A variety of cellular proteins has the ability to recognize DNA lesions induced by the anti-cancer drug cisplatin, with diverse consequences on their repair and on the therapeutic effectiveness of this drug. We report a novel gene involved in the cell response to cisplatin in vertebrates. The RDM1 gene (for RAD52 Motif 1) was identified while searching databases for sequences showing similarities to RAD52, a protein involved in homologous recombination and DNA double-strand break repair. Ablation of RDM1 in the chicken B cell line DT40 led to a more than 3-fold increase in sensitivity to cisplatin. However, RDM1-/- cells were not hypersensitive to DNA damages caused by ionizing radiation, UV irradiation, or the alkylating agent methylmethane sulfonate. The RDM1 protein displays a nucleic acid binding domain of the RNA recognition motif (RRM) type. By using gel-shift assays and electron microscopy, we show that purified, recombinant chicken RDM1 protein interacts with single-stranded DNA as well as double-stranded DNA, on which it assembles filament-like structures. Notably, RDM1 recognizes DNA distortions induced by cisplatin-DNA adducts in vitro. Finally, human RDM1 transcripts are abundant in the testis, suggesting a possible role during spermatogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Abstract Cervical cancer is thought to be the consequence of infection by human papillomaviruses (HPV). In the majority of cases, DNA from HPV type 16 (HPV16) is found in malignant cervical lesions. The initial steps leading to transformation of an infected cell are not clearly understood but in most cases, disruption and integration of the episomal viral DNA must take place. As a consequence, the E2 and E4 genes are usually not expressed whereas the E6 and E7 oncogenes are highly expressed. However, in a normal infection in which the viral DNA is maintained as an episome, all viral genes are expressed. The pattern according to which the viral proteins are made, and therefore the life cycle of the virus, is tightly linked to the differentiation process of the host keratinocyte. The study of the viral oncogenes E6 and E7 has revealed crucial functions in the process of malignant transformation such as degradation of the p53 tumor suppressor protein, deregulation of the Retinoblastoma protein pathway and activation of the telomerase ribonucleoprotein. All these steps are necessary for cancerous lesions to develop. However, the loss of the E2 gene product seems to be necessary for sufficient expression of E6 and E7 in order to achieve such effects. In normal infections, the E4 protein is made abundantly in the later stages of the viral life cycle. Though extensive amounts of work have been carried out to define the function of E4, it still remains unclear. In this study, several approaches have been used to try and determine the functions of E4. First, a cell-penetrating fusion protein was designed and produced in order to circumvent the chronic difficulties of expressing E4 in mammalian cells. Unfortunately, this approach was not successful due to precipitation of the purified fusion protein. Second, the observation that E4 accumulates in cells having modified their adhesion properties led to the hypothesis that E4 might be involved in the differentiation process of keratinocytes. Preliminary results suggest that E4 triggers differentiation. Last, as E4 has been reported to collapse the cytokeratin network of keratinocytes, a direct approach using atomic force microscopy has allowed us to test the potential modification of mechanical properties of cells harboring reorganized cytokeratin networks. If so, a potential role for E4 in viral particle release could be hypothesized. 2. Résumé Il a été établi que le cancer du col de l'utérus se développe essentiellement à la suite d'une infection par le virus du papillome humain (HPV). Dans la majorité des cas analysés, de l'ADN du HPV de type 16 (HPV16) est détecté. Les étapes initiales de la transformation d'une cellule infectée sont mal connues mais il semble qu'une rupture du génome viral, normalement épisomal, suivi d'une intégration dans le génome de la cellule hôte soient des étapes nécessaires dans la plupart des cas. Or il semble qu'il y ait une sélection pour les cas où l'expression des oncogènes viraux E6 et E7 soit favorisée alors que l'expression des gènes E2 et E4 est en général impossible. Par contre, dans une infection dite normale où le génome viral n'est pas rompu, il n'y pas développement de cancer et tous les gènes viraux sont exprimés. L'ordre dans lequel les protéines virales sont produites, et donc le cycle de réplication du virus, est intimement lié au processus de différentiation de la cellule hôte. L'étude des protéines oncogènes E6 et E7 a révélé des fonctions clés dans le processus de transformation des cellules infectées telles que la dégradation du suppresseur de tumeur p53, la dérégulation de la voie de signalisation Rb ainsi que l'activation de la télomérase. Toutes ces activités sont nécessaires au développement de lésions cancéreuses. Toutefois, il semble que l'expression du gène E2 doit être empêchée afin que suffisamment des protéines E6 et E7 soient produites. Lorsque le gène E2 est exprimé, et donc lorsque le génome viral n'est pas rompu, les protéines E6 et E7 n'entraînent pas de telles conséquences. Le gène E4, qui se trouve dans la séquence codante de E2, a aussi besoin d'un génome viral intact pour être exprimé. Dans une infection normale, le gène E4 est exprimé abondamment dans les dernières étapes de la réplication du virus. Bien que de nombreuses études aient été menées afin de déterminer la fonction virale à E4, aucun résultat n'apparaît évident. Dans ce travail, plusieurs approches ont été utilisées afin d'adresser cette question. Premièrement, une protéine de fusion TAT-E4 a été produite et purifiée. Cette protéine, pouvant entrer dans les cellules vivantes par diffusion au travers de la membrane plasmique, aurait permis d'éviter ainsi les problèmes chroniques rencontrés lors de l'expression de E4 dans les cellules mammifères. Malheureusement, cette stratégie n'a pas pu être utilisée à cause de la précipitation de la protéine purifiée. Ensuite, l'observation que E4 s'accumule dans les cellules ayant modifié leurs propriétés d'adhésion a suggéré que E4 pourrait être impliqué dans le procédé de différentiation des kératinocytes. Des résultats préliminaires supportent cette possibilité. Enfin, il a été montré que E4 pouvait induire une réorganisation du réseau des cytokératines. Une approche directe utilisant le microscope à force atomique nous a ainsi permis de tester une potentielle modification des propriétés mécaniques de cellules ayant modifié leur réseau de cytokératines en présence de E4. Si tel est le cas, un rôle dans la libération de particules virales peut être proposé pour E4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrosyneresis and double diffusion are immunoprecipitation techniques commonly used in the serological diagnosis of Farmer's lung disease (FLD). These techniques are reliable but lack standardization. The aim of this study was to evaluate Western blotting for the serodiagnosis of FLD. We carried out Western blotting with an antigenic extract of Lichtheimia corymbifera, an important aetiological agent of the disease. The membranes were probed with sera from 21 patients with FLD and 21 healthy exposed controls to examine the IgG antibody responses against purified somatic antigens. Given the low prevalence of the disease, 21 patients could be considered as a relevant series. Four bands were significantly more frequently represented in membranes probed with FLD sera (bands at 27.7, 40.5, 44.0 and 50.5 kDa) than those probed with control sera. We assessed the diagnostic value of different criteria alone or in combination. The diagnostic accuracy of the test was highest with the inclusion of at least two of the following criteria: at least five bands on the strip and the presence of one band at 40.5 or 44.0 kDa. Sensitivity, specificity and positive and negative predictive values were all 81%, and the odds ratio was 18.06. Inclusion of bands of high intensity diminished rather than improved the diagnostic value of the test. We concluded that Western blotting is a valuable technique for the serodiagnosis of FLD. The industrial production of ready-to-use membranes would enable the routine use of this technique in laboratories, and provide reliable and standardized diagnostic results within a few hours.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: Chloride intracellular channel protein 4 (Clic4) is a ubiquitously expressed protein involved in multiple cellular processes including cell-cycle control, cell differentiation, and apoptosis. Here, we investigated the role of Clic4 in pancreatic β-cell apoptosis. METHODS: We used βTC-tet cells and islets from β-cell specific Clic4 knockout mice (βClic4KO) and assessed cytokine-induced apoptosis, Bcl2 family protein expression and stability, and identified Clic4-interacting proteins by co-immunoprecipitation and mass spectrometry analysis. RESULTS: We show that cytokines increased Clic4 expression in βTC-tet cells and in mouse islets and siRNA-mediated silencing of Clic4 expression in βTC-tet cells or its genetic inactivation in islets β-cells, reduced cytokine-induced apoptosis. This was associated with increased expression of Bcl-2 and increased expression and phosphorylation of Bad. Measurement of Bcl-2 and Bad half-lives in βTC-tet cells showed that Clic4 silencing increased the stability of these proteins. In primary islets β-cells, absence of Clic4 expression increased Bcl-2 and Bcl-xL expression as well as expression and phosphorylation of Bad. Mass-spectrometry analysis of proteins co-immunoprecipitated with Clic4 from βTC-tet cells showed no association of Clic4 with Bcl-2 family proteins. However, Clic4 co-purified with proteins from the proteasome suggesting a possible role for Clic4 in regulating protein degradation. CONCLUSIONS: Collectively, our data show that Clic4 is a cytokine-induced gene that sensitizes β-cells to apoptosis by reducing the steady state levels of Bcl-2, Bad and phosphorylated Bad.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UNLABELLED: We compared the HIV-1-specific cellular and humoral immune responses elicited in rhesus macaques immunized with two poxvirus vectors (NYVAC and ALVAC) expressing the same HIV-1 antigens from clade C, Env gp140 as a trimeric cell-released protein and a Gag-Pol-Nef polyprotein as Gag-induced virus-like particles (VLPs) (referred to as NYVAC-C and ALVAC-C). The immunization protocol consisted of two doses of the corresponding poxvirus vector plus two doses of a combination of the poxvirus vector and a purified HIV-1 gp120 protein from clade C. This immunogenicity profile was also compared to that elicited by vaccine regimens consisting of two doses of the ALVAC vector expressing HIV-1 antigens from clades B/E (ALVAC-vCP1521) plus two doses of a combination of ALVAC-vCP1521 and HIV-1 gp120 protein from clades B/E (similar to the RV144 trial regimen) or clade C. The results showed that immunization of macaques with NYVAC-C stimulated at different times more potent HIV-1-specific CD4(+) T-cell responses and induced a trend toward higher-magnitude HIV-1-specific CD8(+) T-cell immune responses than did ALVAC-C. Furthermore, NYVAC-C induced a trend toward higher levels of binding IgG antibodies against clade C HIV-1 gp140, gp120, or murine leukemia virus (MuLV) gp70-scaffolded V1/V2 and toward best cross-clade-binding IgG responses against HIV-1 gp140 from clades A, B, and group M consensus, than did ALVAC-C. Of the linear binding IgG responses, most were directed against the V3 loop in all immunization groups. Additionally, NYVAC-C and ALVAC-C also induced similar levels of HIV-1-neutralizing antibodies and antibody-dependent cellular cytotoxicity (ADCC) responses. Interestingly, binding IgA antibody levels against HIV-1 gp120 or MuLV gp70-scaffolded V1/V2 were absent or very low in all immunization groups. Overall, these results provide a comprehensive survey of the immunogenicity of NYVAC versus ALVAC expressing HIV-1 antigens in nonhuman primates and indicate that NYVAC may represent an alternative candidate to ALVAC in the development of a future HIV-1 vaccine. IMPORTANCE: The finding of a safe and effective HIV/AIDS vaccine immunogen is one of the main research priorities. Here, we generated two poxvirus-based HIV vaccine candidates (NYVAC and ALVAC vectors) expressing the same clade C HIV-1 antigens in separate vectors, and we analyzed in nonhuman primates their immunogenicity profiles. The results showed that immunization with NYVAC-C induced a trend toward higher HIV-1-specific cellular and humoral immune responses than did ALVAC-C, indicating that this new NYVAC vector could be a novel optimized HIV/AIDS vaccine candidate for human clinical trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A straightforward synthesis of the Met antagonist JLK1360 involving an alkylationcyclocondensation process using aminothiazole 1 and nitrophenacyl bromide 2, reduction of the nitro group, and coupling of the resulting tetracyclic aniline 5 with an appropriate N-acyl alanine derivative, is reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A straightforward synthesis of the Met antagonist JLK1360 involving an alkylationcyclocondensation process using aminothiazole 1 and nitrophenacyl bromide 2, reduction of the nitro group, and coupling of the resulting tetracyclic aniline 5 with an appropriate N-acyl alanine derivative, is reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis (TFG) the results of the comparison between different methods to obtain a recombinant protein, by orthologous and heterologous expression, are exposed. This study will help us to identify the best way to express and purify a recombinant protein that will be used for biotechnology applications. In the first part of the project the goal was to find the best expression and purification system to obtain the recombinant protein of interest. To achieve this objective, a system expression in bacteria and in yeast was designed. The DNA was cloned into two different expression vectors to create a fusion protein with two different tags, and the expression of the protein was induced by IPTG or glucose. Additionally, in yeast, two promoters where used to express the protein, the one corresponding to the same protein (orthologous expression), and the ENO2 promoter (heterologous expression). The protein of interest is a NAD-dependent enzyme so, in a second time, its specific activity was evaluated by coenzyme conversion. The results of the TFG suggest that, comparing the model organisms, bacteria are more efficient than yeast because the quantity of protein obtained is higher and better purified. Regarding yeast, comparing the two expression mechanisms that were designed, heterologous expression works much better than the orthologous expression, so in case that we want to use yeast as expression model for the protein of interest, ENO2 will be the best option. Finally, the enzymatic assays, done to compare the effectiveness of the different expression mechanisms respect to the protein activity, revealed that the protein purified in yeast had more activity in converting the NAD coenzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple HPLC/UV method was developed for the determination of the anticancer candidate LaSOM 65 in rat plasma. Samples were cleaned by protein precipitation with acetonitrile (recovery > 95%), after which they were subjected to chromatography under the isocratic elution of an acetonitrile:water (45:55, ν/ν) solution with detection at 303 nm. The method was linear (r² > 0.98) over the concentration range (0.05-2 µg mL-1) with intra- and inter-day precision ranging from 9.6% to 13.6% and 4.3% to 5.4%, respectively. The accuracy of the method ranged from 85% to 113.6%, and it showed sufficient sensitivity to determine pharmacokinetic parameters of LaSOM 65 after intravenous administration to Wistar rats.