973 resultados para protein tyrosine kinase
Resumo:
Although neurotrophins are primarily associated with long-term effects on neuronal survival and differentiation, recent studies have shown that acute changes in synaptic transmission can also be produced. In the hippocampus, an area critically involved in learning and memory, we have found that brain-derived neurotrophic factor (BDNF) rapidly enhanced synaptic efficacy through a previously unreported mechanism--increased postsynaptic responsiveness via a phosphorylation-dependent pathway. Within minutes of BDNF application to cultured hippocampal neurons, spontaneous firing rate was dramatically increased, as were the frequency and amplitude of excitatory postsynaptic currents. The increased frequency of postsynaptic currents resulted from the change in presynaptic firing. However, the increased amplitude was postsynaptic in origin because it was selectively blocked by intracellular injection of the tyrosine kinase receptor (Ntrk2/TrkB) inhibitor K-252a and potentiated by injection of the phosphatase inhibitor okadaic acid. These results suggest a role for BDNF in the modulation of synaptic transmission in the hippocampus.
Resumo:
Tyrosine phosphorylation of a 17-amino acid immunoreceptor tyrosine-based activation motif (ITAM), conserved in each of the signaling subunits of the T-cell antigen receptor (TCR), mediates the recruitment of ZAP-70 and syk protein-tyrosine kinases (PTKs) to the activated receptor. The interaction between the two tandemly arranged Src-homology 2 (SH2) domains of this family of PTKs and each of the phosphotyrosine-containing ITAMs was examined by real-time measurements of kinetic parameters. The association rate and equilibrium binding constants for the ZAP-70 and syk SH2 domains were determined for the CD3 epsilon ITAM. Both PTKs bound with ka and Kd values of 5 x 10(6) M-1.sec-1 and approximately 25 nM, respectively. Bindings to the other TCR ITAMs (zeta 1, zeta 2, gamma, and delta ITAMs) were comparable, although the zeta 3 ITAM bound approximately 2.5-fold less well. Studies of the affinity of a single functional SH2 domain of ZAP-70 provided evidence for the cooperative nature of binding of the dual SH2 domains. Mutation of either single SH2 domain decreased the Kd by > 100-fold. Finally, the critical features of the ITAM for syk binding were found to be similar to those required for ZAP-70 binding. These data provide insight into the mechanism by which the multisubunit TCR interacts with downstream effector molecules.
Resumo:
ADP-ribosylation factor-1 (ARF1) est une petite GTPase principalement connue pour son rôle dans la formation de vésicules au niveau de l’appareil de Golgi. Récemment, dans des cellules de cancer du sein, nous avons démontré qu’ARF1 est aussi un médiateur important de la signalisation du récepteur du facteur de croissance épidermique (EGFR) contrôlant la prolifération, la migration et l'invasion cellulaire. Cependant, le mécanisme par lequel l’EGFR active la GTPase ainsi que le rôle de cette dernière dans la régulation de la fonction du récepteur demeure inconnue. Dans cette thèse, nous avions comme objectifs de définir le mécanisme d'activation de ARF1 dans les cellules de cancer du sein hautement invasif et démontrer que l’activation de cette isoforme de ARF joue un rôle essentiel dans la résistance de ces cellules aux inhibiteurs de l'EGFR. Nos études démontrent que les protéines d’adaptatrices Grb2 et p66Shc jouent un rôle important dans l'activation de ARF1. Alors que Grb2 favorise le recrutement d’ARF1 à l'EGFR ainsi que l'activation de cette petite GTPase, p66Shc inhibe le recrutement du complexe Grb2-ARF1 au récepteur et donc contribue à limiter l’activation d’ARF1. De plus, nous démontrons que ARF1 favorise la résistance aux inhibiteurs des tyrosines kinases dans les cellules de cancer du sein hautement invasif. En effet, une diminution de l’expression de ARF1 a augmenté la sensibilité descellules aux inhibiteurs de l'EGFR. Nous montrons également que de hauts niveaux de ARF1 contribuent à la résistance des cellules à ces médicaments en améliorant la survie et les signaux prolifératifs à travers ERK1/2, Src et AKT, tout en bloquant les voies apoptotiques (p38MAPK et JNK). Enfin, nous mettons en évidence le rôle de la protéine ARF1 dans l’apoptose en réponse aux traitements des inhibiteurs de l’EGFR. Nos résultats indiquent que la dépletion d’ARF1 promeut la mort cellulaire induite par gefitinib, en augmentant l'expression de facteurs pro-apoptotiques (p66shc, Bax), en altérant le potentiel de la membrane mitochondriale et la libération du cytochrome C. Ensemble, nos résultats délimitent un nouveau mécanisme d'activation de ARF1 dans les cellules du cancer du sein hautement invasif et impliquent l’activité d’ARF1 comme un médiateur important de la résistance aux inhibiteurs EGFR.
Resumo:
Interaction of Eph receptor tyrosine kinases with their membrane bound ephrin ligands initiates bidirectional signaling events that regulate cell migratory and adhesive behavior. Whole-mount in situ hybridization revealed overlapping expression of the Epha1 receptor and its high-affinity ligands ephrin A1 (Efna1) and ephrin A3 (Efna3) in the primitive streak and the posterior paraxial mesoderm during early mouse development. These results show complex and dynamic expression for all three genes with expression domains that are successively complementary, overlapping, and divergent. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Maternal endothelial dysfunction in preeclampsia is associated with increased soluble fms-like tyrosine kinase-1 (sFlt-1), a circulating antagonist of vascular endothelial growth factor and placental growth factor. Angiotensin II (Ang II) is a potent vasoconstrictor that increases concomitant with sFlt-1 during pregnancy. Therefore, we speculated that Ang II may promote the expression of sFlt-1 in pregnancy. Here we report that infusion of Ang II significantly increases circulating levels of sFlt-1 in pregnant mice, thereby demonstrating that Ang II is a regulator of sFlt-1 secretion in vivo. Furthermore, Ang II stimulated sFlt-1 production in a dose- and time-dependent manner from human villous explants and cultured trophoblasts but not from endothelial cells, suggesting that trophoblasts are the primary source of sFlt-1 during pregnancy. As expected, Ang II-induced sFlt-1 secretion resulted in the inhibition of endothelial cell migration and in vitro tube formation. In vitro and in vivo studies with losartan, small interfering RNA specific for calcineurin and FK506 demonstrated that Ang II-mediated sFlt-1 release was via Ang II type 1 receptor activation and calcineurin signaling, respectively. These findings reveal a previously unrecognized regulatory role for Ang II on sFlt-1 expression in murine and human pregnancy and suggest that elevated sFlt-1 levels in preeclampsia may be caused by a dysregulation of the local renin/angiotensin system.
Resumo:
We have previously identified a phosphorothioate oligonucleotide (PS-ODN) that inhibited epidermal growth factor receptor tyrosine kinase (TK) activity both in cell fractions and in intact A431 cells. Since ODN-based TK inhibitors may have anti-cancer applications and may also help understand the non-antisense mediated effects of PS-ODNs, we have further studied the sequence and chemistry requirements of the parent PS-ODN (sequence: 5′-GGA GGG TCG CAT CGC-3′) as a sequence-dependent TK inhibitor. Sequence deletion and substitution studies revealed that the 5′-terminal GGA GGG hexamer sequence in the parent compound was essential for anti-TK activity in A431 cells. Site-specific substitution of any G with a T in this 5′-terminal motif within the parent compound caused a significant loss in anti-TK activity. The fully PS-modified hexameric motif alone exhibited equipotent activity as the parent 15-mer whereas phosphodiester (PO) or 2′-O-methyl-modified versions of this motif had significantly reduced anti-TK activity. Further, T substitutions within the two 5′-terminal G residues of the hexameric PS-ODN to produce a sequence, TTA GGG, representing the telomeric repeats in human chromosomes, also did not exhibit a significant anti-TK activity. Multiple repeats of the active hexameric motif in PS-ODNs resulted in more potent inhibitors of TK activity than the parent ODN. These results suggested that PS-ODNs, but not PO or 2′-O-methyl modified ODNs, containing the GGA GGG motif can exert potent anti-TK activity which may be desirable in some anti-tumor applications. Additionally, the presence of this previously unidentified motif in antisense PS-ODN constructs may contribute to their biological effects in vitro and in vivo and should be accounted for in the design of the PS-modified antisense ODNs. © 2002 Published by Elsevier Science Inc.
Resumo:
Nerve development, which includes axon outgrowth and guidance, is regulated by many protein families, including receptor protein tyrosine phosphatases (RPTP's).Protein tyrosine phosphatase receptor type 0 (PTPRO) is a type III RPTP that is important for axon growth and guidance, as observed in chicks and flies. In order to examine the effects ofPTPRO on mammalian development, standard behavioral tests were used to compare mice lacking the gene for PTPRO (ROKO mice) to wild-type (WT) mice. The ROKO mice showed a significant delay in reacting to a thermal noxious stimulus, hotplate analgesia, when compared to the WT mice suggesting deficient nociceptive function. In a rotarod test for proprioceptive function the ROKO mice exhibited a significant decrease in the amount of time spent on the rotating rod than did the WT mice. Additional proprioception tests were performed including the climb, step reflex, beam, and mesh walk tests. In the climb and step (place) test, the ROKO group had a significantly lower accuracy in performing the tests than did the WT mice. Thus, mice lacking the PTPRO gene showed behavioral deficiencies that reflect impairment in sensory function, specifically for nociception and proprioception.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Protein tyrosine phosphatases have been the focus of considerable research efforts aimed at developing novel therapeutics; however, these targets are often characterized as being ‘undruggable’ due to the challenge of achieving selectivity, potency and cell permeability. More recently, there has been renewed interest in developing inhibitors of the tyrosine phosphatase SHP2 (PTPN11) in the light of its broad role in cancer, specifically juvenile myelomonocytic leukemia, and recent studies that implicate SHP2 as a key factor in breast cancer progression. Recent significant advances in the field of SHP2 inhibitor development raise the question: are we on the verge of a new era of protein tyrosine phosphatase-directed therapeutics? This article critically appraises recent developments, assesses ongoing challenges and presents a perspective on possible future directions.
Resumo:
Angiogenesis is a process by which new blood vessels are formed from the pre-existing vasculature, and it is a key process that leads to tumour development. Some studies have recognized phenolic compounds as chemopreventive agents; flavonoids, in particular, seem to suppress the growth of tumor cells modifying the cell cycle. Herein, the antiangiogenic activity of Roman chamomile (Chamaemelum nobile L.) extracts (methanolic extract and infusion) and the main phenolic compounds present (apigenin, apigenin-7-O-glucoside, caffeic acid, chlorogenic acid, luteolin, and luteolin-7-O-glucoside) was evaluated through enzymatic assays using the tyrosine kinase intracellular domain of the Vascular Endothelium Growth Factor Receptor-2 (VEGFR-2), which is a transmembrane receptor expressed fundamentally in endothelial cells involved in angiogenesis, and molecular modelling studies. The methanolic extract showed a lower IC50 value (concentration that provided 50% of VEGFR-2 inhibition) than the infusion, 269 and 301 μg mL(-1), respectively. Regarding phenolic compounds, luteolin and apigenin showed the highest capacity to inhibit the phosphorylation of VEGFR-2, leading us to believe that these compounds are involved in the activity revealed by the methanolic extract.
Resumo:
Clostridium difficile-associated disease causes diarrhea to fulminant colitis and death. We investigated the role of phospholipase A(2) (PLA(2)) inhibitors, aristolochic acid (AA), bromophenacyl bromide BPB and quinacrine (QUIN) on the C. difficile toxin A-induced disruption of epithelial integrity, histologic inflammatory damage and intestinal secretion. Toxin A caused severe hemorrhagic and inflammatory fluid secretion at 6-8 h in rabbit ileal segments, an effect that was significantly inhibited by QUIN (71%, P < 0.01), AA (87%, P < 0.0001) or by BPB (51%, P < 0.01). The secretory effect of toxin A was also inhibited in segments adjacent to those with AA (89%, P < 0.01). Furthermore, QUIN or AA substantially reduced the histologic damage seen after 6-8 h in rabbit ileal segments. The cyclooxygenase inhibitor, indomethacin, also significantly inhibited (96%; n = 6) the secretory effects of toxin A in ligated rabbit intestinal segments. The destruction by toxin A of F-actin at the light junctions of T-84 cell monolayers was not inhibited by AA or BPB. AA or QUIN had no effect on the T-84 cell tissue resistance reduction over 8-24 h after toxin A exposure. All the inhibitors were shown to be effective in the doses administered direct in ileal loops to inhibit PLA(2) activity. The data suggest that PLA(2) is involved in the major pathway of toxin A-induced histologic inflammatory damage and hemorrhagic fluid secretion. Cop. right (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Purpose: To study the effect of conformal radiotherapy combined with epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) in the second-line treatment of non-small cell lung cancer (NSCLC). Methods: A total of 316 patients attending Shanghai Pulmonary Hospital affiliated to Tongji University, were divided into two groups: 106 patients were treated with conformal radiotherapy combined with EGFR-TKI (gefitinib, 250 mg/day; or erlotinib, 150 mg/day), while 210 patients were treated with EGFRTKI alone. Some factors, including adverse reactions (AR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and one-year and two-year survival rate, were evaluated. Results: No obvious difference was observed in AR between the two groups (p > 0.05). In the combination therapy group, complete response (CR) was 5 cases, partial response (PR) 43 cases, and stable disease (SD) 47 cases, progressive disease (PD) was 11 cases, response rate (RR) was 45.3 %, and DCR 89.6 %. Median PFS in the combination therapy group and targeted therapy group was 6.5 and 5.0 months, respectively. On the other hand, median OS in the combination therapy group and targeted group was 14.1 and 12.6 months, respectively. One-year survival rate of the combination therapy group and EGFR-TKI group was 60.3 and 50.0 %, respectively, while the two-year survival rate was 26.3 and 19.0 %, respectively. Conclusion: Conformal radiotherapy combined with EGFR-TKI can be used as an effective second-line treatment for NSCLC.
Resumo:
Granulocyte-macrophage colony stimulating factor (GM-CSF), Interleukin-3 (IL-3) and Interleukin-5 (IL-5) have overlapping, pleiotropic effects on hematopoietic cells, including neutrophils, eosinophils, monocytes and early progenitor cells. The high-affinity receptors for human GM-CSF, IL-3, and IL-5 share a common beta-subunit (h beta(c)), which is essential for signalling and plays a major role in recruiting intracellular signalling molecules. While activation of the cytoplasmic tyrosine kinase JAK2 appears to be the initiating event for signalling, the immediate events that trigger this are still unclear. We have isolated a number of activated mutants of h beta(c), which can be grouped into classes defined by their state of receptor phosphorylation, their requirement for alpha subunit as a cofactor, and their activities in primary cells and cell lines. We discuss these findings with regard to the stoichiometry, activation, and signalling of the normal GM-CSF/IL-3/IL-5 receptor complexes. Specifically, this work has implications for the role of the ligand-specific alpha-subunits in initiating the signalling through the beta-subunit, the role of beta subunit dimerization as a receptor trigger, and the function of receptor tyrosine phosphorylation in generating growth and survival signals. Based on the properties of the activated mutants and the recent structures of erythropoietin receptor (Epo-R) complexes, we propose a model in which (1) activation of h beta(c) can occur via alternative states that differ with respect to stoichiometry and subunit assembly, but which all mediate proliferative responses, and (2) each of the different classes of activated mutants mimics one of these alternative states. (C) 2000 International Society for Experimental Hematology. Published by Elsevier Science Inc.
Resumo:
To investigate the molecular basis that makes heterodimeric CD8alphabeta a more efficient coreceptor than homodimeric CD8alphaalpha, we used various CD8 transfectants of T1.4 T cell hybridomas, which are specific for H-2Kd, and a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS 252-260 (SYIPSAEKI). We demonstrate that CD8 is palmitoylated at the cytoplasmic tail of CD8beta and that this allows partitioning of CD8alphabeta, but not of CD8alphaalpha, in lipid rafts. Localization of CD8 in rafts is crucial for its coreceptor function. First, association of CD8 with the src kinase p56lck takes place nearly exclusively in rafts, mainly due to increased concentration of both components in this compartment. Deletion of the cytoplasmic domain of CD8beta abrogated localization of CD8 in rafts and association with p56lck. Second, CD8-mediated cross-linking of p56lck by multimeric Kd-peptide complexes or by anti-CD8 Ab results in p56lck activation in rafts, from which the abundant phosphatase CD45 is excluded. Third, CD8-associated activated p56lck phosphorylates CD3zeta in rafts and hence induces TCR signaling and T cell activation. This study shows that palmitoylation of CD8beta is required for efficient CD8 coreceptor function, mainly because it dramatically increases CD8 association with p56lck and CD8-mediated activation of p56lck in lipid rafts.