854 resultados para progressive
Resumo:
In this paper, the scales of Raven's Progressive Matrices Test, General Scale and Advanced Scale, Series II, for the student population (third cycle of EGB and Polimodal ) in the city of La Plata are presented. Considerations are made as regards both the increase in scores (Flynn effect) observed in relation to the previous scale (1964) and the different mean scores according to two age groups (13-16 and 17-18 years of age) and education mode. The findings enabled inferences related to the significance of the increase, particularly in the case of the higher scores in the population attending a special kind of educational institution.
Resumo:
In this paper, the scales of Raven's Progressive Matrices Test, General Scale and Advanced Scale, Series II, for the student population (third cycle of EGB and Polimodal ) in the city of La Plata are presented. Considerations are made as regards both the increase in scores (Flynn effect) observed in relation to the previous scale (1964) and the different mean scores according to two age groups (13-16 and 17-18 years of age) and education mode. The findings enabled inferences related to the significance of the increase, particularly in the case of the higher scores in the population attending a special kind of educational institution.
Resumo:
In this paper, the scales of Raven's Progressive Matrices Test, General Scale and Advanced Scale, Series II, for the student population (third cycle of EGB and Polimodal ) in the city of La Plata are presented. Considerations are made as regards both the increase in scores (Flynn effect) observed in relation to the previous scale (1964) and the different mean scores according to two age groups (13-16 and 17-18 years of age) and education mode. The findings enabled inferences related to the significance of the increase, particularly in the case of the higher scores in the population attending a special kind of educational institution.
Resumo:
We construct an empirically informed computational model of fiscal federalism, testing whether horizontal or vertical equalization can solve the fiscal externality problem in an environment in which heterogeneous agents can move and vote. The model expands on the literature by considering the case of progressive local taxation. Although the consequences of progressive taxation under fiscal federalism are well understood, they have not been studied in a context with tax equalization, despite widespread implementation. The model also expands on the literature by comparing the standard median voter model with a realistic alternative voting mechanism. We find that fiscal federalism with progressive taxation naturally leads to segregation as well as inefficient and inequitable public goods provision while the alternative voting mechanism generates more efficient, though less equitable, public goods provision. Equalization policy, under both types of voting, is largely undermined by micro-actors' choices. For this reason, the model also does not find the anticipated effects of vertical equalization discouraging public goods spending among wealthy jurisdictions and horizontal encouraging it among poor jurisdictions. Finally, we identify two optimal scenarios, superior to both complete centralization and complete devolution. These scenarios are not only Pareto optimal, but also conform to a Rawlsian view of justice, offering the best possible outcome for the worst-off. Despite offering the best possible outcomes, both scenarios still entail significant economic segregation and inequitable public goods provision. Under the optimal scenarios agents shift the bulk of revenue collection to the federal government, with few jurisdictions maintaining a small local tax.
Resumo:
A cross-sectional survey was made in 56 exceptionally healthy males, ranging in age from 20 to 84 years. Measurements were made of selected steroidal components and peptidic hormones in blood serum, and cognitive and physical tests were performed. Of those blood serum variables that gave highly significant negative correlations with age (r > −0.6), bioavailable testosterone (BT), dehydroepiandrosterone sulfate (DHEAS), and the ratio of insulin-like growth factor 1 (IGF-1) to growth hormone (GH) showed a stepwise pattern of age-related changes most closely resembling those of the age steps themselves. Of these, BT correlated best with significantly age-correlated cognitive and physical measures. Because DHEAS correlated well with BT and considerably less well than BT with the cognitive and physical measures, it seems likely that BT and/or substances to which BT gives rise in tissues play a more direct role in whatever processes are rate-limiting in the functions measured and that DHEAS relates more indirectly to these functions. The high correlation of IGF-1/GH with age, its relatively low correlation with BT, and the patterns of correlations of IGF-1/GH and BT with significantly age-correlated cognitive and physical measures suggest that the GH–IGF-1 axis and BT play independent roles in affecting these functions. Serial determinations made after oral ingestion of pregnenolone and data from the literature suggest there is interdependence of steroid metabolic systems with those operational in control of interrelations in the GH–IGF-1 axis. Longitudinal concurrent measurements of serum levels of BT, DHEAS, and IGF-1/GH together with detailed studies of their correlations with age-correlated functional measures may be useful in detecting early age-related dysregulations and may be helpful in devising ameliorative approaches.
Resumo:
The correlation between telomerase activity and human tumors has led to the hypothesis that tumor growth requires reactivation of telomerase and that telomerase inhibitors represent a class of chemotherapeutic agents. Herein, we examine the effects of inhibition of telomerase inside human cells. Peptide nucleic acid and 2′-O-MeRNA oligomers inhibit telomerase, leading to progressive telomere shortening and causing immortal human breast epithelial cells to undergo apoptosis with increasing frequency until no cells remain. Telomere shortening is reversible: if inhibitor addition is terminated, telomeres regain their initial lengths. Our results validate telomerase as a target for the discovery of anticancer drugs and supply general insights into the properties that successful agents will require regardless of chemical type. Chemically similar oligonucleotides are in clinical trials and have well characterized pharmacokinetics, making the inhibitors we describe practical lead compounds for testing for an antitelomerase chemotherapeutic strategy.
Resumo:
The Ca2+ channel α1A-subunit is a voltage-gated, pore-forming membrane protein positioned at the intersection of two important lines of research: one exploring the diversity of Ca2+ channels and their physiological roles, and the other pursuing mechanisms of ataxia, dystonia, epilepsy, and migraine. α1A-Subunits are thought to support both P- and Q-type Ca2+ channel currents, but the most direct test, a null mutant, has not been described, nor is it known which changes in neurotransmission might arise from elimination of the predominant Ca2+ delivery system at excitatory nerve terminals. We generated α1A-deficient mice (α1A−/−) and found that they developed a rapidly progressive neurological deficit with specific characteristics of ataxia and dystonia before dying ≈3–4 weeks after birth. P-type currents in Purkinje neurons and P- and Q-type currents in cerebellar granule cells were eliminated completely whereas other Ca2+ channel types, including those involved in triggering transmitter release, also underwent concomitant changes in density. Synaptic transmission in α1A−/− hippocampal slices persisted despite the lack of P/Q-type channels but showed enhanced reliance on N-type and R-type Ca2+ entry. The α1A−/− mice provide a starting point for unraveling neuropathological mechanisms of human diseases generated by mutations in α1A.
Resumo:
Accelerating hippocampal sprouting by making unilateral progressive lesions of the entorhinal cortex spared the spatial memory of rats tested for retention of a learned alternation task. Subsequent transection of the sprouted crossed temporodentate pathway (CTD), as well as a simultaneous CTD transection and progressive entorhinal lesion, produced a persistent deficit on the memory task. These results suggest that CTD sprouting, which is homologous to the original perforant path input to the dentate gyrus of the hippocampus, is behaviorally significant and can ameliorate at least some of the memory deficits associated with hippocampal deafferentation.
Resumo:
We previously have described a mouse model for polycystic kidney disease (PKD) caused by either of two mutations, kat or kat2J, that map to the same locus on chromosome 8. The homozygous mutant animals have a latent onset, slowly progressing form of PKD with renal pathology similar to the human autosomal-dominant PKD. In addition, the mutant animals show pleiotropic effects that include facial dysmorphism, dwarfing, male sterility, anemia, and cystic choroid plexus. We previously fine-mapped the kat2J mutation to a genetic distance of 0.28 ± 0.12 centimorgan between D8Mit128 and D8Mit129. To identify the underlying molecular defect in this locus, we constructed an integrated genetic and physical map of the critical region surrounding the kat2J mutation. Cloning and expression analysis of the transcribed sequences from this region identified Nek1, a NIMA (never in mitosis A)-related kinase as a candidate gene. Further analysis of the Nek1 gene from both kat/kat and kat2J/kat2J mutant animals identified a partial internal deletion and a single-base insertion as the molecular basis for these mutations. The complex pleiotropic phenotypes seen in the homozygous mutant animals suggest that the NEK1 protein participates in different signaling pathways to regulate diverse cellular processes. Our findings identify a previously unsuspected role for Nek1 in the kidney and open a new avenue for studying cystogenesis and identifying possible modes of therapy.
Resumo:
A comparison was made of the competence for neoplastic transformation in three different sublines of NIH 3T3 cells and multiple clonal derivatives of each. Over 90% of the neoplastic foci produced by an uncloned transformed (t-SA′) subline on a confluent background of nontransformed cells were of the dense, multilayered type, but about half of the t-SA′ clones produced only light foci in assays without background. This asymmetry apparently arose from the failure of the light focus formers to register on a background of nontransformed cells. Comparison was made of the capacity for confluence-mediated transformation between uncloned parental cultures and their clonal derivatives by using two nontransformed sublines, one of which was highly sensitive and the other relatively refractory to confluence-mediated transformation. Transformation was more frequent in the clones than in the uncloned parental cultures for both sublines. This was dramatically so in the refractory subline, where the uncloned culture showed no overt sign of transformation in serially repeated assays but increasing numbers of its clones exhibited progressive transformation. The reason for the greater susceptibility of the pure clones is apparently the suppression of transformation among the diverse membership that makes up the uncloned parental culture. Progressive selection toward increasing degrees of transformation in confluent cultures plays a major role in the development of dense focus formers, but direct induction by the constraint of confluence may contribute by heritably damaging cells. In view of our finding of increased susceptibility to transformation in clonal versus uncloned populations, expansion of some clones at the expense of others during the aging process would contribute to the marked increase of cancer with age.
Resumo:
A recombinant adeno-associated virus (rAAV) vector capable of infecting cells and expressing rat glial cell line-derived neurotrophic factor (rGDNF), a putative central nervous system dopaminergic survival factor, under the control of a potent cytomegalovirus (CMV) immediate/early promoter (AAV-MD-rGDNF) was constructed. Two experiments were performed to evaluate the time course of expression of rAAV-mediated GDNF protein expression and to test the vector in an animal model of Parkinson’s disease. To evaluate the ability of rAAV-rGDNF to protect nigral dopaminergic neurons in the progressive Sauer and Oertel 6-hydroxydopamine (6-OHDA) lesion model, rats received perinigral injections of either rAAV-rGDNF virus or rAAV-lacZ control virus 3 weeks prior to a striatal 6-OHDA lesion and were sacrificed 4 weeks after 6-OHDA. Cell counts of back-labeled fluorogold-positive neurons in the substantia nigra revealed that rAAV-MD-rGDNF protected a significant number of cells when compared with cell counts of rAAV-CMV-lacZ-injected rats (94% vs. 51%, respectively). In close agreement, 85% of tyrosine hydroxylase-positive cells remained in the nigral rAAV-MD-rGDNF group vs. only 49% in the lacZ group. A separate group of rats were given identical perinigral virus injections and were sacrificed at 3 and 10 weeks after surgery. Nigral GDNF protein expression remained relatively stable over the 10 weeks investigated. These data indicate that the use of rAAV, a noncytopathic viral vector, can promote delivery of functional levels of GDNF in a degenerative model of Parkinson’s disease.