955 resultados para priming effect of soil organic
Effects of human impacts on fine roots and soil organic matter of a pine forest in subtropical China
Effects of grasslands conversion to croplands on soil organic carbon in the temperate Inner Mongolia
Resumo:
The toxicity of xenobiotic in aquatic ecosystems is influenced by many factors such as ambient temperature, water hardness, pond soil type, etc. In the present study, it was observed that air temperature, water hardness and soil sediment have profound influence on the toxicity of deltamethrin to common carp fry (ay. length 3.5 ± 0.5 cm, ay. weight 0.58 ± 0.25 g); 96h LC(sub)50 values for common carp at 38.07 ± 2.20°C maximum and 27.86 ± 1.22°C minimum air temperature in soft and very hard water were 0.102 and 0.495 µg lˉ¹, respectively. This value had increased significantly to 2.37 and 3.02 µg at 30.55 ± 1.21°C maximum and 26.04 ± 0.61°C minimum air temperature, respectively. When sediment was included, 96h LC(sub)50 at 38.07°C maximum temperature in very hard water was 1.808 µg 1ˉ¹ and this had increased to 8.073 µg 1ˉ¹ when tested at 30.55°C maximum temperature. Due to the 7.5°C increase in maximum and 1.7°C in minimum temperature, toxicity increased significantly. Lower toxicity in very hard water in comparison to soft water may be due to the lower solubility of deltarnethrin and high level of calcium. Adsorption reaction of deltamethrin with clay, humus, FeOOH, MnOOH and particulate organic carbon, and complexation reaction with dissolved organic carbon were responsible for the lowered toxicity in the experiment with sediment. Exposure time had no significant effect on acute toxicity of deltamethrin.
Resumo:
A simple and cheap procedure for flexible electronics fabrication was demonstrated by imprinting metallic nanoparticles (NPs) on flexible substrates. Silver NPs with an average diameter of 10 nm were prepared via an improved chemical approach and Ag Np ink was produced in α-terpineol with a concentration up to 15%. Silver micro/nanostructures with a dimension varying from nanometres to microns were produced on a flexible substrate (polyimide) by imprinting the as-prepared silver ink. The fine fluidic properties of an Ag NP/α-terpineol solution and low melting temperatures of silver nanoparticles render a low pressure and low temperature procedure, which is well suited for flexible electronics fabrication. The effects of sintering and mechanical bending on the conductivity of imprinted silver contacts were also investigated. Large area organic field effect transistors (OFET) on flexible substrates were fabricated using an imprinted silver electrode and semiconducting polymer. The OFET with silver electrodes imprinted from our prepared oleic acid stabilized Ag nanoparticle ink show an ideal ohmic contact; therefore, the OFET exhibit high performance (Ion/Ioff ratio: 1 × 103; mobility: 0.071 cm2 V-1 s-1). © 2010 IOP Publishing Ltd.
Resumo:
Liquefaction-induced lateral spreading has been responsible for widespread damage to pile foundations in many large earthquakes. The specification of inertial and kinematic pile and pile cap demands is a particularly challenging aspect of the analysis of pile foundations in laterally spreading soils. This paper presents and examines the results from a pair of dynamic centrifuge tests focusing on pile and pile cap demands for small pile groups with different pile spacings. Inertial and kinematic pile cap forces and lateral pile group interaction are examined with regard to the overturning mechanism that dominated the pile group response. © 2014 Taylor & Francis Group.
The effect of organic matter accumulation on phosphorus release in sediment of Chinese shallow lakes
Resumo:
The effects of organic matter in sediment on phosphorus release were studied by field investigations in eight Chinese shallow freshwater lakes with different trophic status and a laboratory experiment. The sediment organic matter content paralleled the trophic status, ranging from 6.1 to 173.0 g kg(-1) (dry weight), with the mean value of 63.1 g kg(-1) (dry weight). It was positively proportional to Soluble reactive phosphorus concentration in the interstitial water in a form of exponential function, but inversely related to the sediment Fe/P ratio. The sediment alkaline phosphatase activity was significantly related not only to the organic matter content (r = 0.829, P < 0.01, n = 120), but also to the soluble reactive phosphorus concentration in interstitial water (r = 0.454, P < 0.01, n = 42). In the laboratory experiment, the addition of organic matter (dry materials of an aquatic macrophyte) into the sediment significantly enhanced alkaline phosphatase activity and soluble reactive phosphorus release. However, in the treatment with organic matter added and aeration, this release was generally prevented in spite of an increase in APA. Hence, sediment organic matter can effectively accelerate phosphorus release by enzymatic hydrolysis and anaerobic desorption. The latter mechanism seems to be more important.