912 resultados para post-dynamic recrystallization
Resumo:
This review reflects the state of the art in study of contact and dynamic phenomena occurring in cold roll forming. The importance of taking these phenomena into account is determined by significant machine time and tooling costs spent on worn out forming rolls replacement and equipment adjustment in cold roll forming. Predictive modelling of the tool wear caused by contact and dynamic phenomena can reduce the production losses in this technological process.
Resumo:
In an open channel, the transition from super- to sub-critical flow is a flow singularity (the hydraulic jump) characterised by a sharp rise in free-surface elevation, strong turbulence and air entrainment in the roller. A key feature of the hydraulic jump flow is the strong free-surface aeration and air-water flow turbulence. In the present study, similar experiments were conducted with identical inflow Froude numbers Fr1 using a geometric scaling ratio of 2:1. The results of the Froude-similar experiments showed some drastic scale effects in the smaller hydraulic jumps in terms of void fraction, bubble count rate and bubble chord time distributions. Void fraction distributions implied comparatively greater detrainment at low Reynolds numbers yielding some lesser aeration of the jump roller. The dimensionless bubble count rates were significantly lower in the smaller channel, especially in the mixing layer. The bubble chord time distributions were quantitatively close in both channels, and they were not scaled according to a Froude similitude. Simply the hydraulic jump remains a fascinating two-phase flow motion that is still poorly understood.
Resumo:
This paper reports the results of an experiment involving a sample of 204 members of the public who were assessed on three occasions about their willingness to pay for the conservation of the mahogany glider. They were asked this question prior to information being provided to them about the glider and other focal wildlife species; after such information was provided, and finally after participants had had an opportunity to see live specimens of this glider. The mean willingness to pay of the relevant samples are compared and found to show significant variations. Theories are considered that help explain the dynamics of these variations. Serious concerns are raised about the capacity of information provision to reveal ‘true’ contingent valuations of public goods.
Resumo:
Environmental effects on the concentration of photosynthetic pigments in micro-algae can be explained by dynamics of photosystem synthesis and deactivation. A model that couples photosystem losses to the relative cellular rates of energy harvesting (light absorption) and assimilation predicts optimal concentrations of light-harvesting pigments and balanced energy flow under environmental conditions that affect light availability and metabolic rates. Effects of light intensity, nutrient supply and temperature on growth rate and pigment levels were similar to general patterns observed across diverse micro-algal taxa. Results imply that dynamic behaviour associated with photophysical stress, and independent of gene regulation, might constitute one mechanism for photo-acclimation of photosynthesis.
Resumo:
Traditional waste stabilisation pond (WSP) models encounter problems predicting pond performance because they cannot account for the influence of pond features, such as inlet structure or pond geometry, on fluid hydrodynamics. In this study, two dimensional (2-D) computational fluid dynamics (CFD) models were compared to experimental residence time distributions (RTD) from literature. In one of the-three geometries simulated, the 2-D CFD model successfully predicted the experimental RTD. However, flow patterns in the other two geometries were not well described due to the difficulty of representing the three dimensional (3-D) experimental inlet in the 2-D CFD model, and the sensitivity of the model results to the assumptions used to characterise the inlet. Neither a velocity similarity nor geometric similarity approach to inlet representation in 2-D gave results correlating with experimental data. However. it was shown that 2-D CFD models were not affected by changes in values of model parameters which are difficult to predict, particularly the turbulent inlet conditions. This work suggests that 2-D CFD models cannot be used a priori to give an adequate description of the hydrodynamic patterns in WSP. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
We have determined the post-translational modifications of the major capsid protein, L1 of human papillomavirus (HPV) type 6b. Since this virus cannot be cultured in the laboratory to obtain sufficient material for a study, a recombinant L1 protein produced in a vaccinia virus expression system was used in this investigation. Our results show that this protein is phosphorylated at serine residues and is also glycosylated. No myristoylation or palmitoylation was detected. The fraction of L1 protein incorporated into virus-like particles was not glycosylated. Since recombinant L1 protein is a potential human vaccine candidate, knowledge of the post-translation modifications of this protein may prove useful for the design of anti-HPV vaccines. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
1. Establishing biological control agents in the field is a major step in any classical biocontrol programme, yet there are few general guidelines to help the practitioner decide what factors might enhance the establishment of such agents. 2. A stochastic dynamic programming (SDP) approach, linked to a metapopulation model, was used to find optimal release strategies (number and size of releases), given constraints on time and the number of biocontrol agents available. By modelling within a decision-making framework we derived rules of thumb that will enable biocontrol workers to choose between management options, depending on the current state of the system. 3. When there are few well-established sites, making a few large releases is the optimal strategy. For other states of the system, the optimal strategy ranges from a few large releases, through a mixed strategy (a variety of release sizes), to many small releases, as the probability of establishment of smaller inocula increases. 4. Given that the probability of establishment is rarely a known entity, we also strongly recommend a mixed strategy in the early stages of a release programme, to accelerate learning and improve the chances of finding the optimal approach.
Resumo:
The chondroitin sulfate proteoglycans neurocan and phosphacan are believed to modulate neurite outgrowth by binding to cell adhesion molecules, tenascin, and the differentiation factors heparin-binding growth-associated molecule and amphoterin. To assess the role of these chondroitin sulfate proteoglycans in the olfactory system, we describe here their expression patterns during both embryonic and postnatal development in the mouse. Immunoreactivity for neurocan was first detected in primary olfactory neurons at embryonic day 11.5 (E11.5). Neurocan was expressed by primary olfactory axons as they extended toward the rostral pole of the telencephalon as well as by their arbors in glomeruli after they contacted the olfactory bulb. The role of neurocan was examined by growing olfactory neurons on an extracellular matrix substrate containing neurocan or on extracellular matrix in the presence of soluble neurocan. In both cases, neurocan strongly promoted neurite outgrowth. These results suggest that neurocan supports the growth of primary olfactory axons through the extracellular matrix as they project to the olfactory bulb during development. Phosphacan, unlike neurocan, was present within the mesenchyme surrounding the E11.5 and E12.5 nasal cavity. This expression decreased at E13.5, concomitant with a transient appearance of phosphacan in nerve fascicles. Within the embryonic olfactory bulb, phosphacan was localised to the external and internal plexiform layers. However, during early postnatal development phosphacan was concentrated in the glomerular layer. These results suggest that phosphacan may play a role in delineating the pathway of growing olfactory axons as well as defining the laminar organization of the bulb. Together, the spatiotemporal expression patterns of neurocan and phosphacan indicate that these chondroitin sulfate proteoglycans have diverse in situ roles, which are dependent on context-specific interactions with extracellular and cell adhesion molecules within the developing olfactory nerve pathway. (C) 2000 Wiley-Liss, Inc.
Resumo:
Virus-like particles (VLPs) are being currently investigated in vaccines against viral infections in humans. There are different recombinant-protein-expression systems available for obtaining the necessary VLP preparation for vaccination. However, the differences in post-translational modifications of the recombinant proteins obtained and their differences in efficacy in eliciting an anti-viral response in vaccines are not well established. In this study we have compared the posttranslational modifications of human papillomavirus type-6b major capsid protein L1 (HPV 6bL1) expressed using recombinant baculovirus (rBV) in Sf9 (Spodoptera frugiperda) insect cells, with the protein expressed using recombinant vaccinia virus (rVV) in CV-1 kidney epithelial cells, Two-dimensional gel electrophoresis of biosynthetically labelled rBV-expressed HPV 6bL1 showed several post-translationally modified variants of the protein, whereas rVV-expressed HPV 6bL1 showed only a few variants. Phosphorylations were detected at threonine and serine residues for the L1 expressed from rBV compared with phosphorylation at serine residues only for the L1 expressed from rVV. HPV 6bL1 expressed using rBV incorporated [H-3]mannose and [H-3]galactose, whereas HPV 6bL1 expressed using rVV incorporated only [H-3]galactose. We conclude that post-translational modification of recombinant HPV 6bL1 can differ according to the system used for its expression. Since recombinant L1 protein is a potential human-vaccine candidate, the implication of the observed differences in post-translational modifications on immunogenicity of L1 VLPs warrants investigation.
Resumo:
The study aimed to describe the types of care allocated at the end of acute care to people diagnosed with TBI and to identify the factors associated with variations in referral to care. A retrospective analysis of medical records of 61 patients was conducted based on a sample from two hospitals. While 60.7% of the study sample were referred to formal rehabilitation care, this was primarily non-inpatient rehabilitation care (32.8%). Discriminant analysis was used to determine medical and non-medical predictors of referral. Results indicated that place of treatment and age contribute to group differences and were significant in separating the inpatient rehabilitation group from the non-inpatient and no rehabilitation groups. Review by a rehabilitation physician was associated with referral to inpatient rehabilitation but was not adequate to explain referral to non-inpatient rehabilitation. An in-depth exploration of post-acute referral is warranted to improve policy and practice in relation to continuity of care following TBI.
Resumo:
The simultaneous design of the steady-state and dynamic performance of a process has the ability to satisfy much more demanding dynamic performance criteria than the design of dynamics only by the connection of a control system. A method for designing process dynamics based on the use of a linearised systems' eigenvalues has been developed. The eigenvalues are associated with system states using the unit perturbation spectral resolution (UPSR), characterising the dynamics of each state. The design method uses a homotopy approach to determine a final design which satisfies both steady-state and dynamic performance criteria. A highly interacting single stage forced circulation evaporator system, including control loops, was designed by this method with the goal of reducing the time taken for the liquid composition to reach steady-state. Initially the system was successfully redesigned to speed up the eigenvalue associated with the liquid composition state, but this did not result in an improved startup performance. Further analysis showed that the integral action of the composition controller was the source of the limiting eigenvalue. Design changes made to speed up this eigenvalue did result in an improved startup performance. The proposed approach provides a structured way to address the design-control interface, giving significant insight into the dynamic behaviour of the system such that a systematic design or redesign of an existing system can be undertaken with confidence.
Resumo:
Tidal fluctuations in a leaky confined coastal aquifer are damped significantly due to leakage into an overlying phreatic aquifer. Jiao and Tang [1999] presented an analytical solution to a simple model describing this phenomenon. Their solution assumes that the tidal fluctuations in the overlying phreatic aquifer are negligible (i.e,, a static phreatic aquifer), Here we examine dynamic effects of the overlying aquifer based on a new approximate analytical solution. The numerical results indicate that the dynamic effects can be significant for a relatively large leakage and a high transmissivity of the phreatic aquifer.