979 resultados para porphyrin, ferrocene, quinonene, energy transfer, electron transfer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the energy-transfer mechanisms and emission quantum yield measurements of sol-gel-derived Eu3+-based nanohybrids. The matrix of these materials, classified as diureasils and termed U(2000) and U(600), includes urea cross-links between a siliceous backbone and polyether-based segments of two molecular weights, 2000 and 600, respectively. These materials are full-color emitters in which the Eu3+ (5)Do --> F-7(0-4) lines merge with the broad green-blue emission of the nanoscopic matrix's backbone. The excitation spectra show the presence of a large broad band (similar to 27000-29000 cm(-1)) undoubtedly assigned to a ligand-to-metal charge-transfer state. Emission quantum yields range from 2% to 13.0% depending on the polymer molecular weight and Eu3+ concentration. Energy transfer between the hybrid hosts and the cations arises from two different and independent processes: the charge-transfer band and energy transfer from the hybrid's emitting centers. The activation of the latter mechanisms induces a decrease in the emission quantum yields (relative to undoped nanohybrids) and permits a fine-tuning of the emission chromaticity across the Comission Internacionalle d'Eclairage diagram, e.g., (x, y) color coordinates from (0.21, 0.24) to (0.39, 0.36). Moreover, that activation depends noticeably on the ion local coordination. For the diureasils with longer polymer chains, energy transfer occurs as the Eu3+ coordination involves the carbonyl-type oxygen atoms of the urea bridges, which are located near the hybrid's host emitting centers. on the contrary, in the U(600)-based diureasils, the Eu3+ ions are coordinated to the polymer chains, and therefore, the distance between the hybrid's emitting centers and the metal ions is large enough to allow efficient energy-transfer mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the linear optical properties and energy transfer processes in tungstate fluorophosphate glass doped with thulium (Tm3+) and neodymium (Nd3+) ions. The linear absorption spectra from 370 to 3000 nm were obtained. Transitions probabilities, radiative lifetimes, and transition branching ratios were determined using the Judd-Ofelt [Phys. Rev. 127, 750 (1962); J. Chem. Phys. 37, 511 (1962)] theory. Frequency up-conversion to the blue region and fluorescence in the infrared were observed upon pulsed excitation in the range of 630-700 nm. The excitation spectra of the luminescence were obtained to understand the origin of the signals. The temporal decay of the fluorescence was measured for different concentrations of the doping ions. Energy transfer rates among the Tm3+ and Nd3+ ions were also determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate the energy transfer processes in TM3+/Er3+ doped telluride glass pumped at the commercial diode laser pump wavelength similar to 800 nm. Tailoring the rare-earths content in the glass matrix, seven main energy transfer channels within the doping range considered were identified, A 6-fold enhancement of the Er3+ visible frequency upconversion fluorescence at similar to 660 nm is observed due to the inclusion of Tm3+ ions. This is evidence of the relevant contribution of the route Er-1(I-4(11/2)) + Er-2(I-4(13/2)) -> Er-1(I-4(15/2)) + Er-2(F-4(9/2)) to the process. Energy migration among pumped I-4(9/2) level reducing the efficiency of the upconversion emission rate (H-3(11/2), S-4(3/2), and F-4(9/2)) is observed for Er3+ above 1.5 wt%. The rate equations regarding the observed energy transfer routes are determined and a qualitative analysis of the observed processes is reported. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared-to-visible frequency upconversion through cooperative energy-transfer and thermal effects in Tb3+/Yb3+-codoped tellurite glasses excited at 1.064 mum is investigated. Bright luminescence emission around 485, 550, 590, 625 and 65 nm, identified as due to the D-5(4) --> F-7(J) (J= 6, 5, 4, 3, and 2) transitions of the terbium ions, respectively, was recorded. The excitation of the D-5(4) emitting level of the Tb3+ ions is assigned to cooperative energy-transfer from pairs of ytterbium ions.. The effect of temperature on the upconversion process was examined and the results revealed a fourfold upconversion enhancement in the 300-500 K interval. The enhancement of the upconversion process is due to the temperature dependence of the Yb3+-sensitizer absorption cross-section under anti-Stokes excitation. A rate-equation. model using multiphonon-assisted absorption for the ytterbium excitation combined with the energy migration effect between Yb-Yb pair, and Tb3+ ground-state depopulation via multiphonon excitation of the F-7(J) excited states describes quite well the experimental results. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism involved in the Tm3+ (F-3(4))-->Ho3+ (I-5(7)) energy transfer and Tm3+ (H-3(4), H-3(6))-->Tm3+ (F-3(4), F-3(4)) cross relaxation as a function of the donor and acceptor concentrations was investigated in Tm-Ho-codoped fluorozirconate glasses. The experimental transfer rates were determined for the Tm-->Ho energy transfer from the best fit of the acceptor luminescence decay using an expression which takes into account the Inokuti-Hirayama model and localized donor-to-acceptor interaction solution. The original acceptor solution derived from the Inokuti-Hirayama model fits well the acceptor luminescence transient only for low-concentrated systems. The results showed that a fast excitation diffusion that occurs in a very short time (t<transfer rates were always much bigger than the one predicted by the diffusion model, in which the energy transfer process is assisted by excitation migration among donors state, reinforces the existence of a fast excitation diffusion among donor ions before the energy transfer to acceptor already observed in Yb:Er:ZBLAN. The fast excitation diffusion effect was observed to dominate both the Tm-->Tm cross relaxation and Tm-->Ho energy transfer ions from H-3(4) and F-3(4) thulium states, respectively. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visible frequency upconversion emission through resonant energy-transfer involving neodymium and praseodymium ions in PbGeO3-PbF2-CdF2 glass excited by a semiconductor laser at 8 10 nm is investigated. Luminescence emission centered around 485, 530, 610, and 645 nm, which correspond to the P-3(0) -> H-3(4), P-3(1) + I-1(6) -> H-3(5), P-3(0) -> H-3(6) and P-1(0) -> F-3(2) transitions of praseodymium ions, respectively, are observed. The upconversion excitation of the Pr3+ ions excited-state emitting levels was accomplished by means of an ion-pair interaction involving ground-state absorption, multiphonon relaxation, and excited-state absorption of pump photons at 8 10 nm by the Nd3+ (I-4(9/2) -> H-2(9/2), F-4(5/2); F-4(3/2) -> P-2(1/2)) and direct energy-transfer to Pr3+ ((4)G(11/2) + K-2(11/2), H-3(4) -> I-4(9/2), P-3(1) + I-1(6)). The dependence of the upconversion emission intensity upon the excitation power, and neodymium concentration are also examined. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the infrared-to-visible frequency upconversion in Er3+-Yb3+-codoped PbO-GeO2 glass containing silver nanoparticles (NPs). The optical excitation is made with a laser at 980 nm in resonance with the F-2(5/2)-> F-2(7/2) transition of Yb3+ ions. Intense emission bands centered at 525, 550, and 662 nm were observed corresponding to Er3+ transitions. The simultaneous influence of the Yb3+-> Er3+ energy transfer and the contribution of the intensified local field effect due to the silver NPs give origin to the enhancement of the whole frequency upconversion spectra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficiency of energy transfer (ET) between Pr3+ ions in a fluoroindate glass is determined. ET rates, WET, were determined for dilute samples and the results show a dependence of WET on the Pr3+ concentration. ET processes which contribute to resonance fluorescence and frequency upconversion emission were studied. The origin of the interaction energy among the Pr3+ ions was determined to be dipole - dipole. © 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental results are reported which show a strong evidence of energy transfer between Ho 3+ ions in a fluoroindate glass excited by a pulsed laser operating at 640 nm. We identified the origin of the blue and green upconverted fluorescence observed as being due to a Ho 3+-Ho 3+ pair interaction process. The dynamics of the fluorescence revealed the pathways involved in the energy transfer assisted upconversion process. © 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy transfer processes between Er3+ and Tm3+ were investigated examining the frequency upconversion emissions in a fluoroindate glass pumped at 790 nm. A 60-fold enhancement in the emission at ≈670 nm originating from Er3+ was observed when Tm3+ at concentration of 2% was introduced in a sample containing 2% of Er3+. The results are explained considering the influence of cross-relaxation processes between the active ions. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photoluminescence features and the energy transfer processes of Nd3+-based siloxanepoly(oxyethylene) hybrids are reported. The host matrix of these materials, classed as di-ureasils, is formed by a siloxane backbone covalently bonded to polyether chains of two molecular weights by means of urea cross-links. The room-temperature photoluminescence spectra of these xerogels show a wide broad purple-blue-green band (350-570 nm), associated with the emitting centres of the di-ureasil host, and the typical near infrared emission of Nd3+ (700-1400 nm), assigned to the 4F3/2 → 4I9/2,11/2,13/2 transitions. Self-absorptions in the visible range, resonant with intra-4f3 transitions, indicate the existence of an energy conversion mechanism of visible di-ureasil emission into near infrared Nd3+ luminescence. The existence of energy transfer between the di-ureasil's emitting centres and the Nd3+ ions is demonstrated calculating the lifetimes of these emitting centres. The efficiency of that energy transfer changes both with the polymer molecular weight and the Nd3+ concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phonon-assisted cooperative energy transfer and frequency upconversion (UC) in Yb3+/Tb3+ codoped fluoroindate glass were investigated. Anti-Stokes quasiresonant excitation of Yb3+ ions was used to study the influence of multiphonon transitions in the UC process. A rate equation model was used to describe the temperature dependence of the UC emission intensities and the theoretical results are in good agreement with the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectroscopic properties of Tm3+-doped fluoroindate glasses (FIG) were described by single wavelength pumping in the red region. The Judd-Ofelt (J-O) theory was used to obtain the quantum efficiency of the 4f-4f transitions and other spectroscopic parameters. The dynamics of the fluorescence was investigated and energy transfer (ET) processes among Tm3+ ions were studied. The results indicate that a two-step one-photon absorption process is responsible for the ultraviolet upconversion (UC) emissions, and dipole-dipole interaction provides the main contribution for ET rate is equal to the decay rate of noninteracting among active ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report we investigate the optical properties and energy-transfer upconversion luminescence of Ho3+- and Tb3+/Yb 3+-codoped PbGeO3-PbF2-CdF2 glass-ceramic under infrared excitation. In Ho3+/Yb 3+-codoped sample, green(545 nm), red(652 nm), and near-infrared(754 nm) upconversion luminescence corresponding to the 4S 2(5F4) → 5I8, 5F5 → 5I8, and 4S2(5F4) → 5I 7, respectively, was readly observed. Blue(490 nm) signals assigned to the 5F2,3 → 5I8 transition was also detected. In the Tb3+/Yb3+ system, bright UV-visible emission around 384, 415, 438, 473-490, 545, 587, and 623 nm, identified as due to the 5D3(5G6) → 7FJ(J=6,5,4) and 5D4→ 7FJ(J=6,5,4,3) transitions, was measured. The comparison of the upconversion process in glass ceramic and its glassy precursor revealed that the former samples present much higher upconversion efficiencies. The dependence of the upconversion emission upon pump power, and doping contents was also examined. The results indicate that successive energy-transfer between ytterbium and holmium ions and cooperative energy-transfer between ytterbium and terbium ions followed by excited-state absorption are the dominant upconversion excitation mechanisms herein involved. The viability of using the samples for three-dimensional solid-state color displays is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blue and ultraviolet luminescence in (Pr3+, Gd3+) doped fluoroindate glass is studied for excitation in the red region (≈590 nm). Frequency upconversion (UC) is observed due to energy transfer (ET) among three Pr3+ ions initially excited to the D21 state corresponding to the ET process D21 + D21 + D21 → S01 + H53 + H53. Additionally, UC luminescence from states P 72 6 and I 72 6 of Gd3+ is observed for an excitation wavelength resonant with transitions of the Pr3+ ions. The characterization of the luminescence signals allowed to determine ET rate among the Pr3+ ions and provides evidence of interconfigurational ET between Gd3+ and Pr3+ ions. © 2006 American Institute of Physics.