997 resultados para plasma channel
Resumo:
A method for the rapid and simultaneous determination of 6,7-dimethylesculetin (CAS 120-08-1) and geniposide (CAS 24512-63-8) in rat plasma has been developed, using validated high performance liquid chromatography (HPLC) with solid phase extraction (SPE). The HPLC analysis was performed on a commercially available column (200 mm x 4.6 mm, 5 microm) with acetonitrile-methanol-0.1% aqueous formic acid as mobile phase and the UV detection at 343 nm and 238 nm for 6,7-dimethylesculetin and geniposide, respectively. The calibration curves for 6,7-dimethylesculetin and geniposide were linear over the range 0.4-25.6 microg/mL and 1.12-71.68 microg/mL, respectively. The lower limits of quantitation were 0.40 microg/ mL and 1.12 microg/mL, and the lower limits of detection were 0.06 microg/mL and 0.09 microg/ mL, respectively. The intra-day and inter-day precision for 6,7-dimethylesculetin and geniposide were < 5%, whereas the absolute recovery percentages were > 74%. A successful application of the developed HPLC analysis was demonstrated for the pharmacokinetic study of a Traditional Chinese Medicine formula of Yin Chen Hao Tang preparation.
Resumo:
A UPLC/Q-TOF-MS/MS method for analyzing the constituents in rat plasma after oral administration of Yin Chen Hao Tang (YCHT), a traditional Chinese medical formula, has been established. The UPLC/MS fingerprints of the samples were established first in vitro and in vivo, with 45 compounds in YCHT and 21 compounds in rat plasma after oral administration of YCHT were detected. Of the 45 detected compounds in vitro, 30 were identified, and all of the 21 compounds detected in rat plasma were identified either by comparing the retention time and mass spectrometry data with that of reference compounds or by mass spectrometry analysis and retrieving the reference literatures. Of the identified 21 compounds in rat plasma, 19 were the original form of compounds absorbed from the 45 detected compounds in vitro, 2 were the metabolites of the compounds existed in YCHT. It is concluded that a rapid and validated method has been developed based on UPLC-MS/MS, which shows high sensitivity and resolution that is more suitable for identifying the bioactive constituents in plasma after oral administration of Chinese herbal medicines, and provides helpful chemical information for further pharmacology and active mechanism research on the Chinese medical formula.
Resumo:
High performance liquid chromatography (HPLC) coupled with the solid phase extraction method was developed for determining cimifugin (a coumarin derivative; one of Saposhnikovia divaricatae's constituents) in rat plasma after oral administration of Saposhnikovia divaricatae extract (SDE), and the pharmacokinetics of cimifugin either in SDE or as a single compound was investigated. The HPLC analysis was performed on a commercially available column (4.6 mm x 200 mm, 5 pm) with the isocratic elution of solvent A (Methanol) and solvent B (Water) (A:B=60:40) and the detection wavelength was set at 250 nm. The calibration curve was linear over the range of 0.100-10.040 microg/mL. The limit of detection was 30 ng/mL. At the rat plasma concentrations of 0.402, 4.016, 10.040 microg/mL, the intra-day precision was 6.21%, 3.98%, and 2.23%; the inter-day precision was 7.59%, 4.26%, and 2.09%, respectively. The absolute recovery was 76.58%, 76.61%, and 77.67%, respectively. When the dosage of SDE was equal to the pure compound calculated by the amount of cimifugin, it was found to have two maximum peaks while the pure compound only showed one peak in the plasma concentration-time curve. The pharmacokinetic characteristics of SDE showed the superiority of the extract and the properties of traditional Chinese medicine.
Resumo:
Objectives The aim of this study was to evaluate the role of cardiac K+ channel gene variants in families with atrial fibrillation (AF). Background The K+ channels play a major role in atrial repolarization but single mutations in cardiac K+ channel genes are infrequently present in AF families. The collective effect of background K+ channel variants of varying prevalence and effect size on the atrial substrate for AF is largely unexplored. Methods Genes encoding the major cardiac K+ channels were resequenced in 80 AF probands. Nonsynonymous coding sequence variants identified in AF probands were evaluated in 240 control subjects. Novel variants were characterized using patch-clamp techniques and in silico modeling was performed using the Courtemanche atrial cell model. Results Nineteen nonsynonymous variants in 9 genes were found, including 11 rare variants. Rare variants were more frequent in AF probands (18.8% vs. 4.2%, p < 0.001), and the mean number of variants was greater (0.21 vs. 0.04, p < 0.001). The majority of K+ channel variants individually had modest functional effects. Modeling simulations to evaluate combinations of K+ channel variants of varying population frequency indicated that simultaneous small perturbations of multiple current densities had nonlinear interactions and could result in substantial (>30 ms) shortening or lengthening of action potential duration as well as increased dispersion of repolarization. Conclusions Families with AF show an excess of rare functional K+ channel gene variants of varying phenotypic effect size that may contribute to an atrial arrhythmogenic substrate. Atrial cell modeling is a useful tool to assess epistatic interactions between multiple variants.
Resumo:
A loss of function mutation in the TRESK K2P potassium channel (KCNK18), has recently been linked with typical familial migraine with aura. We now report the functional characterisation of additional TRESK channel missense variants identified in unrelated patients. Several variants either had no apparent functional effect, or they caused a reduction in channel activity. However, the C110R variant was found to cause a complete loss of TRESK function, yet is present in both sporadic migraine and control cohorts, and no variation in KCNK18 copy number was found. Thus despite the previously identified association between loss of TRESK channel activity and migraine in a large multigenerational pedigree, this finding indicates that a single non-functional TRESK variant is not alone sufficient to cause typical migraine and highlights the genetic complexity of this disorder. Migraine is a common, disabling neurological disorder with a genetic, environmental and in some cases hormonal component. It is characterized by attacks of severe, usually unilateral and throbbing headache, can be accompanied by nausea, vomiting and photophobia and is clinically divided into two main subtypes, migraine with aura (MA) when a migraine is accompanied by transient and reversible focal neurological symptoms and migraine without aura (MO)1. The multifactorial and clinical heterogeneity of the disorder have considerably hindered the identification of common migraine susceptibility genes and most of our current understanding comes from the studies of familial hemiplegic migraine (FHM), a rare monogenic autosomal dominant form of MA2. So far, the three susceptibility genes that have been convincingly identified in FHM families all encode ion channels or transporters: CACNA1A encoding the α1 subunit of the Cav2.1 calcium channel3, SCN1A encoding the Nav1.1 sodium channel4 and ATP1A2 encoding the α2 subunit of the Na+/K+ pump5. It is believed that mutations in these genes may lead to increased efflux of glutamate and potassium in the synapse and thereby cause migraine by rendering the brain more susceptible to cortical spreading depression (CSD)6 which is thought to play a role in initiating a migraine attack7,8. However, these genes have not to date been implicated in common forms of migraine9. Nevertheless, current opinion suggests that typical migraine, like FHM, is also disorder of neuronal excitability, ion homeostasis and neurotransmitter release10,11,12. Mutations in the SLC4A4 gene encoding the sodium-bicarbonate cotransporter NBCe1, have recently been implicated in several different forms of migraine13, and a variety of genes involved in glutamate homeostasis (PGCP, MTDH14 and LRP115) and a cation channel (TRPM8)15 have also recently been implicated in migraine via genome-wide association studies. Ion channels are therefore highly likely to play an important role in the pathogenesis of typical migraine. TRESK (KCNK18), is a member of the two-pore domain (K2P) family of potassium channels involved in the control of cellular electrical excitability16. Regulation of TRESK activity by the calcium-dependent phosphatase calcineurin17, as well as its expression in dorsal root ganglia (DRG)18 and trigeminal ganglia (TG)19,20 has led to a proposed role for this channel in a variety of pain pathways. In a recent study, a frameshift mutation (F139Wfsx24) in TRESK was identified in a large multigenerational pedigree where it co-segregated perfectly with typical MA and a significant genome-wide linkage LOD score of 3.0. Furthermore, functional analysis revealed that this mutation caused a complete loss of TRESK function and that the truncated subunit was also capable of down regulating wild-type channel function. This therefore highlighted KCNK18 as potentially important candidate gene and suggested that TRESK dysfunction might play a possible role in the pathogenesis of familial migraine with visual aura20. Additional screening for KCNK18 mutations in unrelated sporadic migraine and control cohorts also identified a number of other missense variants; R10G, A34V, C110R, S231P and A233V20. The A233V variant was found only in the control cohort, whilst A34V was identified in a single Australian migraine proband for which family samples were not available, but it was not detected in controls. By contrast, the R10G, C110R, and S231P variants were found in both migraineurs and controls in both cohorts. In this study, we have investigated the functional effect of these variants to further probe the potential association of TRESK dysfunction with typical migraine.
Resumo:
The calcium-activated potassium ion channel gene (KCNN3) is located in the vicinity of the familial hemiplegic migraine type 2 locus on chromosome 1q21.3. This gene is expressed in the central nervous system and plays a role in neural excitability. Previous association studies have provided some, although not conclusive, evidence for involvement of this gene in migraine susceptibility. To elucidate KCNN3 involvement in migraine, we performed gene-wide SNP genotyping in a high-risk genetic isolate from Norfolk Island, a population descended from a small number of eighteenth century Isle of Man ‘Bounty Mutineer’ and Tahitian founders. Phenotype information was available for 377 individuals who are related through the single, well-defined Norfolk pedigree (96 were affected: 64 MA, 32 MO). A total of 85 SNPs spanning the KCNN3 gene were genotyped in a sub-sample of 285 related individuals (76 affected), all core members of the extensive Norfolk Island ‘Bounty Mutineer’ genealogy. All genotyping was performed using the Illumina BeadArray platform. The analysis was performed using the statistical program SOLAR v4.0.6 assuming an additive model of allelic effect adjusted for the effects of age and sex. Haplotype analysis was undertaken using the program HAPLOVIEW v4.0. A total of four intronic SNPs in the KCNN3 gene displayed significant association (P < 0.05) with migraine. Two SNPs, rs73532286 and rs6426929, separated by approximately 0.1 kb, displayed complete LD (r 2 = 1.00, D′ = 1.00, D′ 95% CI = 0.96–1.00). In all cases, the minor allele led to a decrease in migraine risk (beta coefficient = 0.286–0.315), suggesting that common gene variants confer an increased risk of migraine in the Norfolk pedigree. This effect may be explained by founder effect in this genetic isolate. This study provides evidence for association of variants in the KCNN3 ion channel gene with migraine susceptibility in the Norfolk genetic isolate with the rarer allelic variants conferring a possible protective role. This the first comprehensive analysis of this potential candidate gene in migraine and also the first study that has utilised the unique Norfolk Island large pedigree isolate to implicate a specific migraine gene. Studies of additional variants in KCNN3 in the Norfolk pedigree are now required (e.g. polyglutamine variants) and further analyses in other population data sets are required to clarify the association of the KCNN3 gene and migraine risk in the general outbred population.
A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura
Resumo:
Migraine with aura is a common, debilitating, recurrent headache disorder associated with transient and reversible focal neurological symptoms. A role has been suggested for the two-pore domain (K2P) potassium channel, TWIK-related spinal cord potassium channel (TRESK, encoded by KCNK18), in pain pathways and general anaesthesia. We therefore examined whether TRESK is involved in migraine by screening the KCNK18 gene in subjects diagnosed with migraine. Here we report a frameshift mutation, F139WfsX24, which segregates perfectly with typical migraine with aura in a large pedigree. We also identified prominent TRESK expression in migraine-salient areas such as the trigeminal ganglion. Functional characterization of this mutation demonstrates that it causes a complete loss of TRESK function and that the mutant subunit suppresses wild-type channel function through a dominant-negative effect, thus explaining the dominant penetrance of this allele. These results therefore support a role for TRESK in the pathogenesis of typical migraine with aura and further support the role of this channel as a potential therapeutic target.
Resumo:
Background Migraine is a polygenic multifactorial disease, possessing environmental and genetic causative factors with multiple involved genes. Mutations in various ion channel genes are responsible for a number of neurological disorders. KCNN3 is a neuronal small conductance calcium-activated potassium channel gene that contains two polyglutamine tracts, encoded by polymorphic CAG repeats in the gene. This gene plays a critical role in determining the firing pattern of neurons and acts to regulate intracellular calcium channels. Methods The present association study tested whether length variations in the second (more 3') polymorphic CAG repeat in exon 1 of the KCNN3 gene, are involved in susceptibility to migraine with and without aura (MA and MO). In total 423 DNA samples from unrelated individuals, of which 202 consisted of migraine patients and 221 non-migraine controls, were genotyped and analysed using a fluorescence labelled primer set on an ABI310 Genetic Analyzer. Allele frequencies were calculated from observed genotype counts for the KCNN3 polymorphism. Analysis was performed using standard contingency table analysis, incorporating the chi-squared test of independence and CLUMP analysis. Results Overall, there was no convincing evidence that KCNN3 CAG lengths differ between Caucasian migraineurs and controls, with no significant difference in the allelic length distribution of CAG repeats between the population groups (P = 0.090). Also the MA and MO subtypes did not differ significantly between control allelic distributions (P > 0.05). The prevalence of the long CAG repeat (>19 repeats) did not reach statistical significance in migraineurs (P = 0.15), nor was there a significant difference between the MA and MO subgroups observed compared to controls (P = 0.46 and P = 0.09, respectively), or between MA vs MO (P = 0.40). Conclusion This association study provides no evidence that length variations of the second polyglutamine array in the N-terminus of the KCNN3 channel exert an effect in the pathogenesis of migraine.
Resumo:
Isofraxidin is one of the main bioactive constituents in the root of Acanthopanax senticosus, which has antifatigue, antistress, and immuno-accommondating effects. In this study, an ultraperformance LC (UPLC)-ESI MS method was developed for analyzing isofraxidin and its metabolites in rat plasma. The analysis was performed on a UPLC coupled with ESI MS (quadropole MS tandem TOF MS). The lower LOD (LLOD) for isofraxidin was 0.25 ng/mL, the intraday precision was less than 10%, the interday precision was less than 10%, and the extraction recovery was more than 80%. Isofraxidin and two metabolites (M1 and M2) were detected in rat plasma after oral administration of isofraxidin, and the molecular polarities of M1 and M2 were both increased compared to isofraxidin. The metabolites were identified as 5,6-dihydroxyl-7-methoxycoumarin and 5-hydroxyl-6,7-dimethoxycoumarin when subjected to parent ion spectra, product ion spectra, and extract mass and element composition analyses.
Resumo:
Cold-formed steel Lipped Channel Beams (LCB) with web openings are commonly used as floor joists and bearers in building structures. Shear behaviour of these beams is more complicated and their shear capacities are considerably reduced by the presence of web openings. Hence detailed numerical and experimental studies of simply supported LCBs under a mid-span load with aspect ratios of 1.0 and 1.5 were undertaken to investigate the shear behaviour and strength of LCBs with web openings. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative. Improved design equations were therefore proposed for the shear strength of LCBs with web openings based on both experimental and numerical results. This research showed a significant reduction in shear capacities of LCBs when large web openings are included for the purpose of locating building services. A cost effective method of eliminating such detrimental effects of large circular web openings was also therefore investigated using experimental and numerical studies. For this purpose LCBS were reinforced using plate, stud, transverse and sleeve stiffeners with varying sizes and thicknesses that were welded and screw-fastened to the web of LCBs. These studies showed that plate stiffeners were the most suitable. Suitable screw-fastened plate stiffener arrangements with optimum thicknesses were then proposed for LCBs with web openings to restore their original shear capacities. This paper presents the details of finite element analyses and experiments of LCBs with web openings in shear, and the development of improved shear design rules. It then describes the experimental and numerical studies to determine the optimum plate stiffener arrangements and the results. The proposed shear design rules in this paper can be considered for inclusion in the future versions of cold-formed steel design codes.
Resumo:
This paper presents the details of an experimental study of a cold-formed steel hollow flange channel beam known as LiteSteel Beam (LSB) subject to combined bending and shear actions. The LSB sections are produced by a patented manufacturing process involving simultaneous cold-forming and electric resistance welding. Due to the geometry of the LSB, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, much of the existing research for common cold-formed steel sections is not directly applicable to LSB. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions and predominant shear actions. To date, however, no investigation has been conducted into the strength of LSB sections under combined bending and shear actions. Combined bending and shear is especially prevalent at the supports of continuous span and cantilever beams, where the interaction of high shear force and bending moment can reduce the capacity of a section to well below that for the same section subject only to pure shear or moment. Hence experimental studies were conducted to assess the combined bending and shear behaviour and strengths of LSBs. Eighteen tests were conducted and the results were compared with current AS/NZS 4600 and AS 4100 design rules. AS/NZS 4600 design rules were shown to grossly underestimate the combined bending and shear capacities of LSBs and hence two lower bound design equations were proposed based on experimental results. Use of these equations will significantly improve the confidence and cost-effectiveness of designing LSBs for combined bending and shear actions.
Resumo:
Neuromuscular electrical stimulation (NMES) has been consistently demonstrated to improve skeletal muscle function in neurological populations with movement disorders, such as poststroke and incomplete spinal cord injury (Vanderthommen and Duchateau, 2007). Recent research has documented that rapid, supraspinal central nervous system reorganisation/neuroplastic mechanisms are also implicated during NMES (Chipchase et al., 2011). Functional neuroimaging studies have shown NMES to activate a network of sub-cortical and cortical brain regions, including the sensorimotor (SMC) and prefrontal (PFC) cortex (Blickenstorfer et al., 2009; Han et al., 2003; Muthalib et al., 2012). A relationship between increase in SMC activation with increasing NMES current intensity up to motor threshold has been previously reported using functional MRI (Smith et al., 2003). However, since clinical neurorehabilitation programmes commonly utilise NMES current intensities above the motor threshold and up to the maximum tolerated current intensity (MTI), limited research has determined the cortical correlates of increasing NMES current intensity at or above MTI (Muthalib et al., 2012). In our previous study (Muthalib et al., 2012), we assessed contralateral PFC activation using 1-channel functional near infrared spectroscopy (fNIRS) during NMES of the elbow flexors by increasing current intensity from motor threshold to greater than MTI and showed a linear relationship between NMES current intensity and the level of PFC activation. However, the relationship between NMES current intensity and activation of the motor cortical network, including SMC and PFC, has not been clarified. Moreover, it is of scientific and clinical relevance to know how NMES affects the central nervous system, especially in comparison to voluntary (VOL) muscle activation. Therefore, the aim of this study was to utilise multi-channel time domain fNIRS to compare SMC and PFC activation between VOL and NMESevoked wrist extension movements.
Resumo:
Capacity of current and future high data rate wireless communications depend significantly on how well changes in the wireless channel are predicted and tracked. Generally, this can be estimated by transmitting known symbols. However, this increases overheads if the channel varies over time. Given today’s bandwidth demand and the increased necessity for mobile wireless devices, the contributions of this research are very significant. This study has developed a novel and efficient channel tracking algorithm that can recursively update the channel estimation for wireless broadband communications reducing overheads, therefore increasing the speed of wireless communication systems.
Resumo:
Objective: To document change in prevalence of obesity, diabetes and other cardiovascular diease (CVD) risk factors, and trends in dietary macronutrient intake, over an eight-year period in a rural Aboriginal community in central Australia. Design: Sequential cross-sectional community surveys in 1987, 1991 and 1995. Subjects: All adults (15 years and over) in the community were invited to participate. In 1987, 1991 and 1995, 335 (87% of eligible adults), 331 (76%) and 304 (68%), respectively, were surveyed. Main outcome measures: Body mass index and waist : hip ratio; blood glucose level and glucose tolerance; fasting total and high density lipoprotein (HDL) cholesterol and triglyceride levels; and apparent dietary intake (estimated by the store turnover method). Intervention: A community-based nutrition awareness and healthy lifestyle program, 1988-1990. Results: At the eight-year follow-up, the odds ratios (95% CIs) for CVD risk factors relative to baseline were obesity, 1.84 (1.28-2.66); diabetes, 1.83 (1.11-3.03); hypercholesterolaemia, 0.29 (0.20-0.42); and dyslipidaemia (high triglyceride plus low HDL cholesterol level), 4.54 (2.84-7.29). In younger women (15-24 years), there was a trebling in obesity prevalence and a four- to fivefold increase in diabetes prevalence. Store turnover data suggested a relative reduction in the consumption of refined carbohydrates and saturated fats. Conclusion: Interventions targeting nutritional factors alone are unlikely to greatly alter trends towards increasing prevalences of obesity and diabetes. In communities where healthy food choices are limited, the role of regular physical activity in improving metabolic fitness may also need to be emphasised.
Resumo:
This paper investigates the potential of pulsed power to sterilize hard and soft tissues and its impact on their physico-mechanical properties. It hypothesizes that pulsed plasma can sterilize both vascular and avascular tissues and the transitive layers in between without deleterious effects on their functional characteristics. Cartilage/bone laminate was chosen as a model to demonstrate the concept, treated at low temperature, at atmospheric pressure, in short durations and in buffered environment using a purposed-built pulsed power unit. Input voltage and time of exposure were assigned as controlling parameters in a full factorial design of experiment to determine physical and mechanical alteration pre- and post-treatment. The results demonstrated that, discharges of 11 kV sterilized samples in 45 s, reducing intrinsic elastic modules from 1.4 ± 0.9 to 0.9 ± 0.6 MPa. There was a decrease of 14.1 % in stiffness and 27.8 % in elastic-strain energy for the top quartile. Mechanical impairment was directly proportional to input voltage (P value < 0.05). Bacterial inactivation was proportional to treatment time for input voltages above 32 V (P < 0.001; R Sq = 0.98). Thermal analysis revealed that helix-coil transition decelerated with exposure time and collagen fibrils were destabilized as denaturation enthalpy reduced by 200 μV. We concluded by presenting a safe operating threshold for pulsed power plasma as a feasible protocol for effective sterilization of connective tissues with varying level of loss in mechanical robustness which we argue to be acceptable in certain medical and tissue engineering application.