878 resultados para pituitary apoplexy
Resumo:
A 5.2-kb mRNA band that contains estrogen receptor (ER) sequence and exhibits sex- and tissue-specific expression has been identified in rat pituitary via Northern analysis; this band is composed of at least two distinctive ER mRNA isoforms. This mRNA is expressed in high levels in female pituitary but is absent in male pituitary and uterus, whereas the mRNA encoding the full-length receptor (6.2 kb) is expressed in all the aforementioned tissues. Estradiol treatment potently induces the expression of the 5.2-kb band in the male pituitary. Oligonucleotide hybridization and ribonuclease-protection experiments indicate that the pituitary ER variant is missing exons 1-4. Two corresponding cDNA clones, truncated estrogen receptor product 1 and 2 (TERP-1 and TERP-2), were isolated by using the anchored PCR. Both sequences contain a 31-bp segment of specific sequence upstream of exon 5; TERP-2, however, contains an additional 66 bp of specific sequence between the 31-bp segment and exon 5. On Northern analysis, probes complementary to the 31-bp segment of specific sequence hybridize only to the 5.2-kb band. Immunoblotting identified several proteins in rat pituitary that could represent the translation products of these or related transcripts. In summary, several ER isoforms have been identified that exhibit both tissue-specific expression and marked estrogen regulation and differ from full-length receptor by virtue of sequence upstream of the exon 4/5 boundary. Physiologically, the putative proteins encoded by these or similar isoforms might be important modulators of the tissue- and promoter-specific effects of estradiol.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Pages 59-67, advertising matter.
Resumo:
Mode of access: Internet.
Resumo:
Bibliographical foot-notes.
Resumo:
Mutations of the MEN1 gene, encoding the tumor suppressor menin, predispose individuals to the cancer syndrome multiple endocrine neoplasia type 1, characterized by the development of tumors of the endocrine pancreas and anterior pituitary and parathyroid glands. We have targeted the murine Men1 gene by using Cre recombinase-loxP technology to develop both total and tissue-specific knockouts of the gene. Conditional homozygous inactivation of the Men1 gene in the pituitary gland and endocrine pancreas bypasses the embryonic lethality associated with a constitutional Men1(-/-) genotype and leads to beta-cell hyperplasia in less than 4 months and insulinomas and prolactinomas starting at 9 months. The pituitary gland and pancreas develop normally in the conditional absence of menin, but loss of this transcriptional cofactor is sufficient to cause beta-cell hyperplasia in some islets; however, such loss is not sufficient to initiate pituitary gland tumorigenesis, suggesting that additional genetic events are necessary for the latter.
Resumo:
Recent investigations have implicated the medial prefrontal cortex (mPFC) in modulation of subcortical pathways that contribute to the generation of behavioural, autonomic and endocrine responses to stress. However, little is known of the mechanisms involved. One of the key neurotransmitters involved in mPFC function is dopamine, and we therefore aimed, in this investigation, to examine the role of mPFC dopamine in response to stress in Wistar rats. In this regard, we infused dopamine antagonists SCH23390 or sulpiride into the mPFC via retrodialysis. We then examined changes in numbers of cells expressing the c-fos immediate-early gene protein product, Fos, in subcortical neuronal populations associated with regulation of hypothalamic-pituitary-adrenal (HPA) axis stress responses in response to either of two stressors; systemic injection of interleukin-1beta, or air puff. The D-1 antagonist, SCH23390, and the D-2 antagonist, sulpiride, both attenuated expression of Fos in the medial parvocellular hypothalamic paraventricular nucleus (mpPVN) corticotropin-releasing factor cells at the apex of the HPA axis, as well as in most extra-hypothalamic brain regions examined in response to interleukin-1beta. By contrast, SCH23390 failed to affect Fos expression in response to air puff in any brain region examined, while sulpiride resulted in an attenuation of the air puff-induced response in only the mpPVN and the bed nucleus of the stria terminalis. These results indicate that the mPFC differentially processes the response to different stressors and that the two types of dopamine receptor may have different roles.
Resumo:
The nuclectide sequence for pituitary prolactin cDNA from the marsupial bandicoot (Isoodon macrourus) was determined by reverse transcription-polymerase chain reaction and 5'/3' rapid amplification of cDNA ends. The deduced amino acid sequence showed high sequence identity with brushtail possum prolactin (95%) and all of the expected structural features of a quadruped prolactin. A prolactin gene tree was constructed and rates of evolution calculated for bandicoot, possum, opossum and several mammalian and non-mammalian prolactins. Bootstrap analysis provided strong support for marsupials as a sister group with eutherian mammals and weak support for opossum and bandicoot as an independent grouping from the brushtail possum. The rates of molecular evolution for marsupial prolactins were comparable to the slow rate seen in the majority of quadruped prolactins that have been sequenced. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
A previous study has suggested that a G to A base change at position 169 of the GHRH-receptor gene in human somatotrophinomas is a mutation and confers hypersensitivity to GHRH. The alternative base converts codon 57 from GCG to AGC, resulting in replacement of alanine (Ala) with threonine (Thr). In the present study, two of five human GH-secreting somatotrophinomas were found to possess the codon 57 AGC sequence. The GCG allele was also detected, indicating heterozygosity. However, the patients' normal blood-derived DNA also yielded the same sequence pattern, indicating that the Ala=> Thr amino acid change is a normal polymorphism, and not a somatic mutation. Nevertheless, in vitro, the tumors possessing the Ala=> Thr amino acid change responded very strongly to GHRH in terms of cAMP formation, being increased 40- and 200-fold, in comparison to the 2-fold increases by tumors without the alternative GHRH-receptor sequence. Likewise, the in vitro response of GH secretion to GHRH was elevated. One of the two tumors with the alternative Thr residue, and the highest responder to GHRH, possessed a gsp muration, despite the fact that these defects are thought to reduce responsiveness to GHRH. These results fail to confirm that the GCG => AGC at codon 57 of the GHRH-receptor gene is a mutation, but do support the concept that the alternative form with Thr confers increased sensitivity to GHRH. (C) 2000 Academic Press.
Resumo:
Pituitary adenylate cyclase-activating polypeptide (PACAP) functions as a neuroprotective factor through the PACAP type 1 receptor, PAC1. In a previous work, we demonstrated that nerve growth factor augmented PAC1 gene expression through the activation of Sp1 via the Ras/MAPK pathway. We also observed that PAC1 expression in Neuro2a cells was transiently suppressed during in vitro ischemic conditions, oxygen-glucose deprivation (OGD). Because endoplasmic reticulum (ER) stress is induced by ischemia, we attempted to clarify how ER stress affects the expression of PAC1. Tunicamycin, which induces ER stress, significantly suppressed PAC1 gene expression, and salubrinal, a selective inhibitor of the protein kinase RNA-like endoplasmic reticulum kinase signaling pathway of ER stress, blocked the suppression. In luciferase reporter assay, we found that two Sp1 sites were involved in suppression of PAC1 gene expression due to tunicamycin or OGD. Immunocytochemical staining demonstrated that OGD-induced transglutaminase 2 (TG2) expression was suppressed by salubrinal or cystamine, a TG activity inhibitor. Further, the OGD-induced accumulation of cross-linked Sp1 in nuclei was suppressed by cystamine or salubrinal. Together with cystamine, R283, TG2-specific inhibitor, and siRNA specific for TG2 also ameliorated OGD-induced attenuation of PAC1 gene expression. These results suggest that Sp1 cross-linking might be crucial in negative regulation of PAC1 gene expression due to TG2 in OGD-induced ER stress. © 2013 by The American Society for Biochemistry and Molecular Biology, Inc.