967 resultados para photochemical reaction mechanisms
Resumo:
The mechanisms and the reaction products for the oxidation of sulfide ions in the presence of pyrite have been established. When the leach solution contains free sulfide ions, oxidation occurs via electron transfer from the sulfide ion to dissolved oxygen on the pyrite mineral surface, with polysulfides being formed as an intermediate oxidation product. In the absence of cyanide, the polysulfides are further oxidised to thiosulfate, whilst with cyanide present, thiocyanate and sulfite are also formed from the reaction of polysulfides with cyanide and dissolved oxygen. Polysulfide chain length has been shown to affect the final reaction products of polysulfide oxidation by dissolved oxygen. The rate of pyrite catalysed sulfide ion oxidation was found to be slower in cyanide solutions compared to cyanide free solutions. Mixed potential measurements indicated that the reduction of oxygen at the pyrite surface is hindered in the presence of cyanide. The presence of sulfide ions was also found to activate the pyrite surface, increasing its rate of oxidation by oxygen. This effect was particularly evident in the presence of cyanide; in the presence of sulfide the increase in total sulfur from pyrite oxidation was 2.3 mM in 7 h, compared to an increase of <1 mM in the absence of sulfide over 24 h.
Resumo:
Emotionally arousing events can distort our sense of time. We used mixed block/event-related fMRI design to establish the neural basis for this effect. Nineteen participants were asked to judge whether angry, happy and neutral facial expressions that varied in duration (from 400 to 1,600 ms) were closer in duration to either a short or long duration they learnt previously. Time was overestimated for both angry and happy expressions compared to neutral expressions. For faces presented for 700 ms, facial emotion modulated activity in regions of the timing network Wiener et al. (NeuroImage 49(2):1728–1740, 2010) namely the right supplementary motor area (SMA) and the junction of the right inferior frontal gyrus and anterior insula (IFG/AI). Reaction times were slowest when faces were displayed for 700 ms indicating increased decision making difficulty. Taken together with existing electrophysiological evidence Ng et al. (Neuroscience, doi: 10.3389/fnint.2011.00077, 2011), the effects are consistent with the idea that facial emotion moderates temporal decision making and that the right SMA and right IFG/AI are key neural structures responsible for this effect.
Resumo:
Exploiting metal-free catalysts for the oxygen reduction reaction (ORR) and understanding their catalytic mechanisms are vital for the development of fuel cells (FCs). Our study has demonstrated that in-plane heterostructures of graphene and boron nitride (G/BN) can serve as an efficient metal-free catalyst for the ORR, in which the C-N interfaces of G/BN heterostructures act as reactive sites. The formation of water at the heterointerface is both energetically and kinetically favorable via a fourelectron pathway. Moreover, the water formed can be easily released from the heterointerface, and the catalytically active sites can be regenerated for the next reaction. Since G/BN heterostructures with controlled domain sizes have been successfully synthesized in recent reports (e.g. Nat. Nanotechnol., 2013, 8, 119), our results highlight the great potential of such heterostructures as a promising metal-free catalyst for ORR in FCs.
Resumo:
We introduce the design of a thermoresponsive nanoparticle via sacrificial micelle formation based on supramolecular host–guest chemistry. Reversible addition–fragmentation chain transfer (RAFT) polymerization was employed to synthesize well-defined polymer blocks of poly(N,N-dimethylacrylamide) (poly(DMAAm)) (Mn,SEC = 10 700 g mol–1, Đ = 1.3) and poly(N-isopropylacrylamide) (poly(NiPAAm)) (Mn,SEC = 39 700 g mol–1, Đ = 1.2), carrying supramolecular recognition units at the chain termini. Further, 2-methoxy-6-methylbenzaldehyde moieties (photoenols, PE) were statistically incorporated into the backbone of the poly(NiPAAm) block as photoactive cross-linking units. Host–guest interactions of adamantane (Ada) (at the terminus of the poly(NiPAAm/PE) chain) and β-cyclodextrin (CD) (attached to the poly(DMAAm chain end) result in a supramolecular diblock copolymer. In aqueous solution, the diblock copolymer undergoes micellization when heated above the lower critical solution temperature (LCST) of the thermoresponsive poly(NiPAAm/PE) chain, forming the core of the micelle. Via the addition of a 4-arm maleimide cross-linker and irradiation with UV light, the micelle is cross-linked in its core via the photoinduced Diels–Alder reaction of maleimide and PE units. The adamantyl–cyclodextrin linkage is subsequently cleaved by the destruction of the β-CD, affording narrowly distributed thermoresponsive nanoparticles with a trigger temperature close to 30 °C. Polymer chain analysis was performed via size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) spectroscopy, and dynamic light scattering (DLS). The size and thermoresponsive behavior of the micelles and nanoparticles were investigated via DLS as well as atomic force microscopy (AFM).
Resumo:
The reactions of terminal borylene complexes of the type [CpFe(CO)(2)(BNR2)](+) (R = `Pr, Cy) with heteroallenes have been investigated by quantum-chemical methods, in an attempt to explain the experimentally observed product distributions. Reaction with dicyclohexylcarbodiimide (CyNCNCy) gives a bis-insertion product, in which 1 equiv of carbodiimide is assimilated into each of the Fe=B and B=N double bonds to form a spirocyclic boronium system. In contrast, isocyanates (R'NCO, R' = Ph, 2,6-wXy1, CY; XYl = C6H3Me2) react to give isonitrile complexes of the type [CpFe(CO)(2)(CNR')]+, via a net oxygen abstraction (or formal metathesis) process. Both carbodiimide and socyanate substrates are shown to prefer initial attack at the Fe=B bond rather than the B=N bond of the borylene complex. Further mechanistic studies reveal that the carbodiimide reaction ultimately leads to the bis-insertion compounds [CpFe(CO)(2)C(NCy)(2)B(NCY)(2)CNR2](+), rather than to the isonitrile system [CpFe(CO)(2)(CNCy)](+), on the basis of both thermodynamic (product stability) and kinetic considerations (barrier heights). The mechanism of the initial carbodiimide insertion process is unusual in that it involves coordination of the substrate at the (borylene) ligand followed by migration of the metal fragment, rather than a more conventional process: i.e., coordination of the unsaturated substrate at the metal followed by ligand migration. In the case of isocyanate substrates, metathesis products are competitive with those from the insertion pathway. Direct, single-step metathesis reactivity to give products containing a coordinated isonitrile ligand (i.e. [CpFe(CO)(2)(CNR')](+)) is facile if initial coordination of the isocyanate at boron occurs via the oxygen donor (which is kinetically favored); insertion chemistry is feasible when the isocyanate attacks initially via the nitrogen atom. However, even in the latter case, further reaction of the monoinsertion product so formed with excess isocyanate offers a number of facile (low energetic barrier) routes which also generate ['CpFe(CO)(2)(CNR')](+), rather than the bis-insertion product [CpFe(CO)(2)C(NR')(O)B(NR')(O)CNR2](+) (i.e., the direct analogue of the observed products in the carbodiimide reaction).
Resumo:
Railway wheel vibrations are caused by a number of mechanisms. Two of these are considered: (a) gravitational load reaction acting on different points of the wheel rim, as the wheel rolls on, and (b) random fluctuating forces generated at the contact patch by roughness on the mating surfaces of the wheel and rail. The wheel is idealized as a thin ring, and the analysis is limited to a single wheel rolling on a rail. It is shown that the first mechanism results in a stationary pattern of vibration, which would not radiate any sound. The acceleration caused by roughness-excited forces is much higher at higher frequencies, but is of the same order as that caused by load reaction at lower frequencies. The computed acceleration level (and hence the radiated SPL) caused by roughness is comparable with the observed values, and is seen to increase by about 10 dB for a doubling of the wagon speed. The driving point impedance of the periodic rail-sleeper system at the contact patch, which is used in the analysis, is derived in a companion paper.
Resumo:
The reaction of hexachlorocyclotriphosphazene (N3P3Cl6) with sodium p-cresoxide proceeds by a predominantly nongeminal pathway. The presence of geminal isomers at the bis- and tris-stages of substitution in tiny quantities (< 5%) has also been observed. All the chloro(p-cresoxy)cyclotriphosphazenes and their dimethylamino derivatives have been characterized by 1H-, 13C{1H}-, and 31P{1H}-NMR spectroscopy. The reaction of N3P3Cl6 with sodium phenoxide has been reinvestigated. The relative yields of the products at various stages of substitution and their isomeric compositions are almost the same for both phenoxy and p-cresoxy systems. Possible mechanisms to explain the observed isomeric compositions are discussed. A through-space interaction involving oxygen-2p and phosphorus-3d orbitals is invoked to explain the greater yield of the cis isomer of N3P3Cl4(OAr)2 than that of its trans isomer.
Resumo:
In order to understand the physiological response of oilseed rape (Brassica napus L.) leaves to cadmium (Cd) stress and exploit the physiological mechanisms involved in Cd tolerance, macro-mineral and chlorophyll concentrations, reactive oxygen species (ROS) accumulation, activities of enzymatic antioxidants, nonenzymatic compounds metabolism, endogenous hormonal changes, and balance in leaves of oilseed rape exposed to 0, 100, or 200 μM CdSO4 were investigated. The results showed that under Cd exposure, Cd concentrations in the leaves continually increased while macro-minerals and chlorophyll concentrations decreased significantly. Meanwhile, with increased Cd stress, superoxide anion (O 2 • − ) production rate and hydrogen peroxide (H2O2) concentrations in the leaves increased significantly, which caused malondialdehyde (MDA) accumulation and oxidative stress. For scavenging excess accumulated ROS and alleviating oxidative injury in the leaves, the activity of enzymatic antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), was increased significantly at certain stress levels. However, with increased Cd stress, the antioxidant enzyme activities all showed a trend towards reduction. The nonenzymatic antioxidative compounds, such as proline and total soluble sugars, accumulated continuously with increased Cd stress to play a long-term role in scavenging ROS. In addition, ABA levels also increased continuously with Cd stress while ZR decreased and the ABA/ZR ratio increased, which might also be providing a protective role against Cd toxicity.
Resumo:
Singlet-oxygen reaction with dialkyl, aryl alkyl, and diaryl thioketones is found to give the corresponding sulphines and ketones in proportions depending on the nature of the thioketone.
Resumo:
Metal-free CNTs exhibit high activity (conversion rate 99.6%, 6 h) towards the synthesis of chiral hydrobenzoin from benzaldehyde under near-UV light irradiation (320–400 nm). The CNT structure before and after the reaction, the interaction between the molecule and the CNT surface, the intermediate products, the substitution effect and the influence of light on the reaction were examined using various techniques. A photo-excited conduction electron transfer (PECET) mechanism for the photocatalytic reduction using CNTs has been proposed. This finding provides a green photocatalytic route for the production of hydrobenzoin and highlights a potential photocatalytic application of CNTs.
Resumo:
Atherosclerosis is an inflammatory disease characterized by accumulation of lipids in the inner layer of the arterial wall. During atherogenesis, various structures that are recognized as non-self by the immune system, such as modified lipoproteins, are deposited in the arterial wall. Accordingly, atherosclerotic lesions and blood of humans and animals with atherosclerotic lesions show signs of activation of both innate and adaptive immune responses. Although immune attack is initially a self-protective reaction, which is meant to destroy or remove harmful agents, a chronic inflammatory state in the arterial wall accelerates atherosclerosis. Indeed, various modulations of the immune system of atherosclerosis-prone animals have provided us with convincing evidence that immunological mechanisms play an important role in the pathogenesis of atherosclerosis. This thesis focuses on the role of complement system, a player of the innate immunity, in atherosclerosis. Complement activation via any of the three different pathways (classical, alternative, lectin) proceeds as a self-amplifying cascade, which leads to the generation of opsonins, anaphylatoxins C3a and C5a, and terminal membrane-attack complex (MAC, C5b-9), all of which regulate the inflammatory response and act in concert to destroy their target structures. To prevent uncontrolled complement activation or its attack against normal host cells, complement needs to be under strict control by regulatory proteins. The complement system has been shown to be activated in atherosclerotic lesions, modified lipoproteins and immune complexes containing oxLDL, for instance, being its activators. First, we investigated the presence and role of complement regulators in human atherosclerotic lesions. We found that inhibitors of the classical and alternative pathways, C4b-binding protein and factor H, respectively, were present in atherosclerotic lesions, where they localized in the superficial proteoglycan-rich layer. In addition, both inhibitors were found to bind to arterial proteoglycans in vitro. Immunohistochemical stainings revealed that, in the superficial layer of the intima, complement activation had been limited to the C3 level, whereas in the deeper intimal layers, complement activation had proceeded to the terminal C5b-9 level. We were also able to show that arterial proteoglycans inhibit complement activation in vitro. These findings suggested to us that the proteoglycan-rich layer of the arterial intima contains matrix-bound complement inhibitors and forms a protective zone, in which complement activation is restricted to the C3 level. Thus, complement activation is regulated in atherosclerotic lesions, and the extracellular matrix is involved in this process. Next, we studied whether the receptors for the two complement derived effectors, anaphylatoxins C3a and C5a, are expressed in human coronary atherosclerotic lesions. Our results of immunohistochemistry and RT-PCR analysis showed that, in contrast to normal intima, C3aR and C5aR were highly expressed in atherosclerotic lesions. In atherosclerotic plaques, the principal cells expressing both C3aR and C5aR were macrophages. Moreover, T cells expressed C5aR, and a small fraction of them also expressed C3aR, mast cells expressed C5aR, whereas endothelial cells and subendothelial smooth muscle cells expressed both C3aR and C5aR. These results suggested that intimal cells can respond to and become activated by complement-derived anaphylatoxins. Finally, we wanted to learn, whether oxLDL-IgG immune complexes, activators of the classical complement pathway, could have direct cellular effects in atherogenesis. Thus, we tested whether oxLDL-IgG immune complexes affect the survival of human monocytes, the precursors of macrophages, which are the most abundant inflammatory cell type in atherosclerotic lesions. We found that OxLDL-IgG immune complexes, in addition to transforming monocytes into foam cells, promoted their survival by decreasing their spontaneous apoptosis. This effect was mediated by cross-linking Fc receptors with ensuing activation of Akt-dependent survival signaling. Our finding revealed a novel mechanism by which oxLDL-IgG immune complexes can directly affect the accumulation of monocyte-macrophages in human atherosclerotic lesions and thus play a role in atherogenesis.
Resumo:
Exposure to water-damaged buildings and the associated health problems have evoked concern and created confusion during the past 20 years. Individuals exposed to moisture problem buildings report adverse health effects such as non-specific respiratory symptoms. Microbes, especially fungi, growing on the damp material have been considered as potential sources of the health problems encountered in these buildings. Fungi and their airborne fungal spores contain allergens and secondary metabolites which may trigger allergic as well as inflammatory types of responses in the eyes and airways. Although epidemiological studies have revealed an association between damp buildings and health problems, no direct cause-and-effect relationship has been established. Further knowledge is needed about the epidemiology and the mechanisms leading to the symptoms associated with exposure to fungi. Two different approaches have been used in this thesis in order to investigate the diverse health effects associated with exposure to moulds. In the first part, sensitization to moulds was evaluated and potential cross-reactivity studied in patients attending a hospital for suspected allergy. In the second part, one typical mould known to be found in water-damaged buildings and to produce toxic secondary metabolites was used to study the airway responses in an experimental model. Exposure studies were performed on both naive and allergen sensitized mice. The first part of the study showed that mould allergy is rare and highly dependent on the atopic status of the examined individual. The prevalence of sensitization was 2.7% to Cladosporium herbarum and 2.8% to Alternaria alternata in patients, the majority of whom were atopic subjects. Some of the patients sensitized to mould suffered from atopic eczema. Frequently the patients were observed to possess specific serum IgE antibodies to a yeast present in the normal skin flora, Pityrosporum ovale. In some of these patients, the IgE binding was partly found to be due to binding to shared glycoproteins in the mould and yeast allergen extracts. The second part of the study revealed that exposure to Stachybotrys chartarum spores induced an airway inflammation in the lungs of mice. The inflammation was characterized by an influx of inflammatory cells, mainly neutrophils and lymphocytes, into the lungs but with almost no differences in airway responses seen between the satratoxin producing and non-satratoxin producing strain. On the other hand, when mice were exposed to S. chartarum and sensitized/challenged with ovalbumin the extent of the inflammation was markedly enhanced. A synergistic increase in the numbers of inflammatory cells was seen in BAL and severe inflammation was observed in the histological lung sections. In conclusion, the results in this thesis imply that exposure to moulds in water damaged buildings may trigger health effects in susceptible individuals. The symptoms can rarely be explained by IgE mediated allergy to moulds. Other non-allergic mechanisms seem to be involved. Stachybotrys chartarum is one of the moulds potentially responsible for health problems. In this thesis, new reaction models for the airway inflammation induced by S. chartarum have been found using experimental approaches. The immunological status played an important role in the airway inflammation, enhancing the effects of mould exposure. The results imply that sensitized individuals may be more susceptible to exposure to moulds than non-sensitized individuals.
Resumo:
Nucleation is the first step of the process by which gas molecules in the atmosphere condense to form liquid or solid particles. Despite the importance of atmospheric new-particle formation for both climate and health-related issues, little information exists on its precise molecular-level mechanisms. In this thesis, potential nucleation mechanisms involving sulfuric acid together with either water and ammonia or reactive biogenic molecules are studied using quantum chemical methods. Quantum chemistry calculations are based on the numerical solution of Schrödinger's equation for a system of atoms and electrons subject to various sets of approximations, the precise details of which give rise to a large number of model chemistries. A comparison of several different model chemistries indicates that the computational method must be chosen with care if accurate results for sulfuric acid - water - ammonia clusters are desired. Specifically, binding energies are incorrectly predicted by some popular density functionals, and vibrational anharmonicity must be accounted for if quantitatively reliable formation free energies are desired. The calculations reported in this thesis show that a combination of different high-level energy corrections and advanced thermochemical analysis can quantitatively replicate experimental results concerning the hydration of sulfuric acid. The role of ammonia in sulfuric acid - water nucleation was revealed by a series of calculations on molecular clusters of increasing size with respect to all three co-ordinates; sulfuric acid, water and ammonia. As indicated by experimental measurements, ammonia significantly assists the growth of clusters in the sulfuric acid - co-ordinate. The calculations presented in this thesis predict that in atmospheric conditions, this effect becomes important as the number of acid molecules increases from two to three. On the other hand, small molecular clusters are unlikely to contain more than one ammonia molecule per sulfuric acid. This implies that the average NH3:H2SO4 mole ratio of small molecular clusters in atmospheric conditions is likely to be between 1:3 and 1:1. Calculations on charged clusters confirm the experimental result that the HSO4- ion is much more strongly hydrated than neutral sulfuric acid. Preliminary calculations on HSO4- NH3 clusters indicate that ammonia is likely to play at most a minor role in ion-induced nucleation in the sulfuric acid - water system. Calculations of thermodynamic and kinetic parameters for the reaction of stabilized Criegee Intermediates with sulfuric acid demonstrate that quantum chemistry is a powerful tool for investigating chemically complicated nucleation mechanisms. The calculations indicate that if the biogenic Criegee Intermediates have sufficiently long lifetimes in atmospheric conditions, the studied reaction may be an important source of nucleation precursors.
Resumo:
The water-gas shift (WGS) reaction was carried out in the presence of Pd and Pt substituted nanocrystalline ceria catalysts synthesized by solution combustion technique. The catalysts were characterized by powder XRD and XPS. The noble metals were found to be present in ionic form substituted for the cerium atoms. The catalysts showed highactivity for the WGS reaction with high conversions below 250 degrees C. The products of reaction were only carbon dioxide and hydrogen, and no hydrocarbons were observed even in trace quantities. The reactions were carried out with different amounts of noble metal ion substitution and 2% Pt substituted ceria was found to be the best catalyst. The various possible mechanisms for the reaction were proposed and tested for their consistency with experimental data. The dual site mechanism best described the kinetics of the reaction and the corresponding rate parameters were obtained.
Resumo:
The photorearrangement of benzyl phenyl ethers and methyl phenoxyacetates was investigated in methanol and in complexes with cyclodextrin in both the solid state and aqueous solutions. Irradiation in cyclodextrin media leads to a large change in product distribution with a very significant ortho selectivity different from that found in methanol where the reaction is non-selective. For meta-substituted ethers and phenoxyacetates, an impressive regioselectivity between the two ortho-rearranged isomers is observed and this is significantly enhanced by increasing the substituent chain length which acts as a spacer to induce a tight fit between the host and the guest. The observed results are rationalized on the basis of specific orientations of the unsubstituted and meta-substituted ethers and phenoxyacetates in the cyclodextrin cavity.