950 resultados para photobiological hydrogen production
Resumo:
221 p.
Resumo:
A marine green alga, Platymonas subcordiformis, was demonstrated to photobiologically evolve hydrogen (H-2) after the first stage of photosynthesis, when subjected to a two-phase incubation protocol in a second stage of H2 production: anaerobic incubation in the dark followed by the exposure to light illumination. The anaerobic incubation induced hydrogenase activity to catalyse H? evolution in the following phase of light illumination. H,) evolution strongly depended upon the duration of anaerobic incubation, deprivation of sulphur (S) from the medium and the medium pH. An optimal anaerobic incubation period of 32 h gave the maximum H2 evolution in the second phase in the absence of sulphur. Evolution of H,) was greatly enhanced by 13 times when S was deprived from the medium. This result suggests that S plays a critical role in the mediation of H-2 evolution from R subcordiformis. A 14-fold increase in H-2 production was obtained when the medium pH increased from 5 to 8; with a sharp decline at pH above eight. H-2 evolution was enhanced by 30-50% when supplementing the optimal concentrations of 25 mM acetate and 37.5 mM glucose. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The reaction of producing hydrogen for fuel cell which used normal octane as gasoline or diesel oil reactant through catalytic partial oxidizing and steam reforming method has been researched in the fixed-bed reactor. A series of catalysts that mainly used nickel supported on Al2O3 have been studied. It showed that the activity of the catalyst was increased with the content of nickel by using only nickel supported on Al2O3. However, its activity was not obviously increased when the content of nickel was over 5 wt%. The conversion ratio of normal octane and hydrogen selectivity were higher at higher reaction temperature. The single noble catalyst of palladium had better stability compared with that of platinum catalyst although their activity and selectivity were similar during the experimental reaction temperature. The prepared bimetallic catalyst consisted mainly of nickel and little noble metal of palladium supported on Al2O3. It showed that this catalyst had higher activity and selectivity, especially at lower or higher reaction temperatures compared with single nickel or palladium catalyst, and better stability. ((C) 2001 International Association for Hydrogen Energy. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Waste glycerol was converted to secondary amines in a one pot reaction, using Clostridium butyricum and catalytic hydrogen transfer-mediated amination.
Resumo:
In this paper we demonstrate a new concept in the production of negative hydrogen ions in a low-pressure multicusp discharge. The discharge voltage is modulated to produce a non-Maxwellian, hot-electron plasma during the current pulse, followed by a cool Maxwellian electron plasma in the post discharge. This procedure, of separating in time the required hot and cold electron plasmas required for volume H- production, is called a temporal filter. The time evolution of the electron energy distribution function is measured using the time-resolved second derivative of a Langmuir probe characteristic. Time-resolved measurements of the negative ion density are made using laser photodetachment. The measurements show that the negative ion density in the center of the source, at a gas pressure of 0.07 Pa, increases by a factor of 2 when the discharge is switched off. At this low pressure the average H- beam current extracted from the source, when operated with a discharge current of 1 A in the pulse modulated mode exceeds the H- beam current from a 5 A continuously operated source. The increase in efficiency of the pulsed source is explained in terms of a two-step H- production mechanism.