637 resultados para phospholipase A
Resumo:
Bovine kidney phospholipase D (PLD) was assayed by measuring the formation of phosphatidylethanol from added radioactive phosphatidylcholine (PtdCho) in the presence of ethanol, guanosine 5'-[gamma-thio]triphosphate, ammonium sulfate, and cytosol factor that contained small GTP-binding regulatory proteins. The PLD enzyme associated with particulate fractions was solubilized by deoxycholate and partially purified by chromatography on a heparin-Sepharose column. This PLD preferentially used PtdCho as substrate. After purification, the enzyme per se showed little or practically no activity but required an additional factor for the enzymatic reaction. This factor was extracted with chloroform/methanol directly from particulate fractions of various tissues, including kidney, liver, and brain, and identified as phosphatidylethanolamine (PtdEtn), although this phospholipid did not serve as a good substrate. Plasmalogen-rich PtdEtn, dioleoyl-PtdEtn, and L-alpha-palmitoyl-beta-linoleoyl-PtdEtn were effective, but dipalmitoyl-PtdEtn was inert. Sphingomyelin was 30% as active as PtdEtn. The results suggest that mammalian PLD reacts nearly selectively with PtdCho in the form of mixed micelles or membranes with other phospholipids, especially PtdEtn.
Resumo:
Stimulatory guanine nucleotide binding protein (Gs)-coupled receptors activated by luteinizing hormone, vasopressin, and the catecholamine isoproterenol (luteinizing hormone receptor, type 2 vasopressin receptor, and types 1 and 2 beta-adrenergic receptors) and the Gi-coupled M2 muscarinic receptor (M2R) were expressed transiently in COS cells, alone and in combination with Gbeta gamma dimers, their corresponding Galphas (Galpha(s), or Galpha(i3)) and either Galpha(q) or Galpha(16). Phospholipase C (PLC) activity, assessed by inositol phosphate production from preincorporated myo[3H]inositol, was then determined to gain insight into differential coupling preferences among receptors and G proteins. The following were observed: (i) All receptors tested were able to stimulate PLC activity in response to agonist occupation. The effect of the M2R was pertussis toxin sensitive. (ii) While, as expected, expression of Galpha(q) facilitated an agonist-induced activation of PLC that varied widely from receptor to receptor (400% with type 2 vasopressin receptor and only 30% with M2R), expression of Galpha(16) facilitated about equally well the activation of PLC by any of the tested receptors and thus showed little if any discrimination for one receptor over another. (iii) Gbeta gamma elevated basal (agonist independent) PLC activity between 2- and 4-fold, confirming the proven ability of Gbeta gamma to stimulate PLCbeta. (iv) Activation of expressed receptors by their respective ligands in cells coexpressing excess Gbeta gamma elicited agonist stimulated PLC activities, which, in the case of the M2R, was not blocked by pertussis toxin (PTX), suggesting mediation by a PTX-insensitive PLC-stimulating Galpha subunit, presumably, but not necessarily, of the Gq family. (v) The effects of Gbeta gamma and the PTX-insensitive Galpha elicited by M2R were synergistic, suggesting the possibility that one or more forms of PLC are under conditional or dual regulation of G protein subunits such that stimulation by one sensitizes to the stimulation by the other.
Resumo:
To delineate the phospholipase C (PLC; EC 3.1.4.3) beta2 sequences involved in interactions with the beta-gamma subunits of G proteins, we prepared a number of mammalian expression plasmids encoding a series of PLC beta2 segments that span the region from the beginning of the X box to the end of the Y box. We found the sequence extending from residue Glu-435 to residue Val-641 inhibited Gbeta-gamma-mediated activation of PLC beta2 in transfected COS-7 cells. This PLC beta2 sequence also inhibited ligand-induced activation of PLC in COS-7 cells cotransfected with cDNAs encoding the complement component C5a receptor and PLC beta2 but not in cells transfected with the alpha1B-adrenergic receptor, suggesting that the PLC beta2 residues (Glu-435 to Val-641) inhibit the Gbeta-gamma-mediated but not the Galpha-mediated effect. The inhibitory effect on Gbeta-gamma-mediated activation of PLC beta2 may be the result of the interaction between Gbeta-gamma and the PLC beta2 fragment. This idea was confirmed by the observation that a fusion protein comprising these residues (Glu-435 to Val-641) of PLC beta2 and glutathione S-transferase (GST) bound to Gbeta-gamma in an in vitro binding assay. The Gbeta-gamma-binding region was further narrowed down to 62 amino acids (residues Leu-580 to Val-641) by testing fusion proteins comprising various PLC beta2 sequences and GST in the in vitro binding assay.
Resumo:
We addressed the question as to which subtypes of G protein subunits mediate the activation of phospholipase C-beta by the muscarinic m1 receptor. We used the rat basophilic leukemia cell line RBL-2H3-hm1 stably transfected with the human muscarinic m1 receptor cDNA. We microinjected antisense oligonucleotides into the nuclei of the cells to inhibit selectively the expression of G protein subunits; 48 hr later muscarinic receptors were activated by carbachol, and the increase in free cytosolic calcium concentration ([Ca2+]i) was measured. Antisense oligonucleotides directed against the mRNA coding for alpha(q) and alpha11 subunits both suppressed the carbachol-induced increase in [Ca2+]i. In cells injected with antisense oligonucleotides directed against alpha(o1) and alpha14 subunits, the carbachol effect was unchanged. A corresponding reduction of Galpha(q), and Galpha11 proteins by 70-80% compared to uninjected cells was immunochemically detected 2 days after injection of a mixture of alpha(q) and alpha11 antisense oligonucleotides. Expression of Galpha(q) and Galpha11 completely recovered after 4 days. Cells injected with antisense oligonucleotides directed against the mRNAs encoding for beta1, beta4, and gamma4 subunits showed a suppression of the carbachol-induced increase in [Ca2+]i compared to uninjected cells measured at the same time from the same coverslip, whereas in cells injected with antisense oligonucleotides directed against the beta2, beta3, gamma1, gamma2, gamma3, gamma5, and gamma7 subunits, no suppression of carbachol effect was observed. In summary, the results from RBL-2H3-hm1 cells indicate that the m1 receptor utilizes a G protein complex composed of the subunits alpha(q), alpha11, beta1, beta4, and gamma4 to activate phospholipase C.
Resumo:
Protein kinase C (PKC), a major cellular receptor for tumor-promoting phorbol esters and diacylglycerols (DGs), appears to be involved in a variety of cellular functions, although its activation mechanism in vivo is not yet fully understood. To evaluate the signaling pathways involved in the activation of PKC epsilon upon stimulation by platelet-derived growth factor (PDGF) receptor (PDGFR), we used a series of PDGFR "add-back" mutants. Activation of a PDGFR mutant (Y40/51) that binds and activates phosphatidylinositol 3-kinase (PI 3-kinase) caused translocation of PKC epsilon from the cytosol to the membrane in response to PDGF. A PDGFR mutant (Y1021) that binds and activates phospholipase C gamma (PLC gamma), but not PI 3-kinase, also caused the PDGF-dependent translocation of PKC epsilon. The translocation of PKC epsilon upon stimulation of PDGFR (Y40/51) was inhibited by wortmannin, an inhibitor of PI 3-kinase. Activation of PKC epsilon was further confirmed in terms of PKC epsilon-dependent expression of a phorbol 12-tetradecanoate 13-acetate response element (TRE)-luciferase reporter. Further, purified PKC epsilon was activated in vitro by either DG or synthetic phosphatidylinositol 3,4,5-trisphosphate. These results clearly demonstrate that PKC epsilon is activated through redundant and independent signaling pathways which most likely involve PLC gamma or PI 3-kinase in vivo and that PKC epsilon is one of the downstream mediators of PI 3-kinase whose downstream targets remain to be identified.
Resumo:
Phospholipid metabolism plays an important role in cellular regulation by generating second messengers for signal transduction. Many stimuli activate a phospholipase D, which catalyzes the hydrolysis of phosphatidylcholine, producing phosphatidic acid and choline. Here we report that the yeast SP014 gene, which is essential for meiosis [Honigberg, S. M., Conicella, C. & Esposito, R. E. (1992) Genetics 130, 703-716], encodes a phospholipase D. SP014 RNA and protein activity are induced during late meiotic prophase, and the enzyme has properties similar to mammalian phosphatidylinositol 4,5-bisphosphate-regulated phospholipase D. Characterization of an unusual allele of SP014 defines regions of the protein important for enzyme catalysis and regulation. These results implicate phospholipase D signaling in regulating cellular differentiation.
Resumo:
Phospholipase D (PLD) associated with the rat kidney membrane was activated by guanine 5'-[gamma-thio]triphosphate and a cytosol fraction that contained ADP-ribosylation factor. When assayed by measuring the phosphatidyl transfer reaction to ethanol with exogenously added radioactive phosphatidylcholine as substrate, the PLD required a high concentration (1.6 M) of ammonium sulfate to exhibit high enzymatic activity. Other salts examined were far less effective or practically inactive, and this dramatic action of ammonium sulfate is not simply due to such high ionic strength. Addition of ATP but not of nonhydrolyzable ATP analogue adenosine 5'-[beta, gamma-imido]diphosphate further enhanced the PLD activation approximately equal to 2- to 3-fold. This enhancement by ATP needed cytosol, implying a role of protein phosphorylation. A survey of PLD activity in rat tissues revealed that, unlike in previous observations reported thus far, PLD was most abundant in membrane fractions of kidney, spleen, and liver in this order, and the enzymatic activity in brain and lung was low.
Resumo:
A cDNA encoding a signal transduction protein with a Src homology 2 (SH2) domain and a tyrosine phosphorylation site was cloned from a rat lymph node cDNA library. This protein, which we designate Lnk, has a calculated molecular weight of 33,988. When T lymphocytes were activated by antibody-mediated crosslinking of the T-cell receptor and CD4, Lnk became tyrosine phosphorylated. In activated T lymphocytes, phospholipase C gamma 1, phosphatidylinositol 3-kinase, and Grb-2 coimmunoprecipitated with Lnk. Our results suggest that Lnk becomes tyrosine phosphorylated and links the immediate tyrosine phosphorylation signals of the TCR to the distal phosphatidylinositol 3-kinase, phospholipase C gamma 1 and Ras signaling pathways through its multifunctional tyrosine phosphorylation site.
Resumo:
A selective polyclonal antibody directed toward the C-terminal decapeptide common to the alpha subunits of Gq and G11 G proteins (G alpha q/G alpha 11) was prepared and used to investigate the subcellular distribution fo these proteins in WRK1 cells, a rat mammary tumor cell line. In immunoblots, the antibody recognized purified G alpha q and G alpha 11 proteins and labeled only two bands corresponding to these alpha subunits. Functional studies indicated that this antibody inhibited vasopressin- and guanosine 5'-[alpha-thio]triphosphate-sensitive phospholipase C activities. Immunofluorescence experiments done with this antibody revealed a filamentous labeling corresponding to intracytoplasmic and perimembranous actin-like filament structures. Colocalization of G alpha q/G alpha 11 and F-actin filaments (F-actin) was demonstrated by double-labeling experiments with anti-G alpha q/G alpha 11 and anti-actin antibodies. Immunoblot analysis of membrane, cytoskeletal, and F-actin-rich fractions confirmed the close association of G alpha q/G alpha 11 with actin. Large amounts of G alpha q/G alpha 11 were recovered in the desmin- and tubulin-free F-actin-rich fraction obtained by a double depolymerization-repolymerization cycle. Disorganization of F-actin filaments with cytochalasin D preserved G alpha q/G alpha 11 and F-actin colocalization but partially inhibited vasopressin- and fluoroaluminate-sensitive phospholipase C activity, suggesting that actin-associated G alpha q/G alpha 11 proteins play a role in signal transduction.
Resumo:
Cellular levels of free arachidonic acid (AA) are controlled by a deacylation/reacylation cycle whereby the fatty acid is liberated by phospholipases and reincorporated by acyltransferases. We have found that the esterification of AA into membrane phospholipids is a Ca(2+)-independent process and that it is blocked up to 60-70% by a bromoenollactone (BEL) that is a selective inhibitor of a newly discovered Ca(2+)-independent phospholipase A2 (PLA2) in macrophages. The observed inhibition correlates with a decreased steady-state level of lysophospholipids as well as with the inhibition of the Ca(2+)-independent PLA2 activity in these cells. This inhibition is specific for the Ca(2+)-independent PLA2 in that neither group IV PLA2, group II PLA2, arachidonoyl-CoA synthetase, lysophospholipid:arachidonoyl-CoA acyltransferase, nor CoA-independent transacylase is affected by treatment with BEL. Moreover, two BEL analogs that are not inhibitors of the Ca(2+)-independent PLA2--namely a bromomethyl ketone and methyl-BEL--do not inhibit AA incorporation into phospholipids. Esterification of palmitic acid is only slightly affected by BEL, indicating that de novo synthetic pathways are not inhibited by BEL. Collectively, the data suggest that the Ca(2+)-independent PLA2 in P388D1 macrophages plays a major role in regulating the incorporation of AA into membrane phospholipids by providing the lysophospholipid acceptor employed in the acylation reaction.
Resumo:
Mouse bone marrow-derived mast cells (BMMCs) developed with interleukin 3 (IL-3) can be stimulated by c-kit ligand (KL) and accessory cytokines over a period of hours for direct delayed prostaglandin (PG) generation or over a period of days to prime for augmented IgE-dependent PG and leukotriene (LT) production, as previously reported. We now report that IL-4 is counterregulatory for each of these distinct KL-dependent responses. BMMCs cultured for 4 days with KL + IL-3 or with KL + IL-10 produced 5- to 7-fold more PGD2 and approximately 2-fold more LTC4 in response to IgE-dependent activation than BMMCs maintained in IL-3 alone. IL-4 inhibited the priming for increased IgE-dependent PGD2 and LTC4 production to the level obtained by activation of BMMCs maintained in IL-3 alone with an IC50 of approximately 0.2 ng/ml. IL-4 inhibited the KL-induced increase in expression of cytosolic phospholipase A2 (cPLA2) but had no effect on the incremental expression of PG endoperoxide synthase 1 (PGHS-1) and hematopoietic PGD2 synthase or on the continued baseline expression of 5-lipoxygenase, 5-lipoxygenase activating protein, and LTC4 synthase. BMMCs stimulated by KL + IL-10 for 10 h exhibited a delayed phase of PGD2 generation, which was dependent on de novo induction of PGHS-2. IL-4 inhibited the induction of PGHS-2 expression and the accompanying cytokine-initiated delayed PGD2 generation with an IC50 of approximately 6 ng/ml. IL-4 had no effect on the expression of PGHS-2 and the production of PGD2 elicited by addition of IL-1 beta to the combination of KL + IL-10. IL-4 had no effect on the immediate phase of eicosanoid synthesis elicited by KL alone or by IgE and antigen in BMMCs maintained in IL-3. Thus, the counterregulatory action of IL-4 on eicosanoid generation is highly selective for the induced incremental expression of cPLA2 and the de novo expression of PGHS-2, thereby attenuating time-dependent cytokine-regulated responses to stimulation via Fc epsilon receptor I and stimulation via c-kit, respectively.
Resumo:
The nucleotide sequences of four genes encoding Trimeresurus gramineus (green habu snake, crotalinae) venom gland phospholipase A2 (PLA2; phosphatidylcholine 2-acylhydrolase, EC 3.1.1.4) isozymes were compared internally and externally with those of six genes encoding Trimeresurus flavoviridis (habu snake, crotalinae) venom gland PLA2 isozymes. The numbers of nucleotide substitutions per site (KN) for the noncoding regions including introns were one-third to one-eighth of the numbers of nucleotide substitutions per synonymous site (KS) for the protein-coding regions of exons, indicating that the noncoding regions are much more conserved than the protein-coding regions. The KN values for the introns were found to be nearly equivalent to those of introns of T. gramineus and T. flavoviridis TATA box-binding protein genes, which are assumed to be a general (nonvenomous) gene. Thus, it is evident that the introns of venom gland PLA2 isozyme genes have evolved at a similar rate to those of nonvenomous genes. The numbers of nucleotide substitutions per nonsynonymous site (KA) were close to or larger than the KS values for the protein-coding regions in venom gland PLA2 isozyme genes. All of the data combined reveal that Darwinian-type accelerated evolution has universally occurred only in the protein-coding regions of crotalinae snake venom PLA2 isozyme genes.
Resumo:
ADP ribosylation factor (ARF) is a small guanosine triphosphate (GTP)-binding protein that regulates the binding of coat proteins to membranes and is required for several stages of vesicular transport. ARF also stimulates phospholipase D (PLD) activity, which can alter the lipid content of membranes by conversion of phospholipids into phosphatidic acid. Abundant PLD activity was found in Golgi-enriched membranes from several cell lines. Golgi PLD activity was greatly stimulated by ARF and GTP analogs and this stimulation could be inhibited by brefeldin A (BFA), a drug that blocks binding of ARF to Golgi membranes. Furthermore, in Golgi membranes from BFA-resistant PtK1 cells, basal PLD activity was high and not stimulated by exogenous ARF or GTP analogs. Thus, ARF activates PLD on the Golgi complex, suggesting a possible link between transport events and the underlying architecture of the lipid bilayer.
Resumo:
A cDNA corresponding to a putative phosphatidylinositol-specific phospholipase C (PI-PLC) in the higher plant Arabidopsis thaliana was cloned by use of the polymerase chain reaction. The cDNA, designated cAtPLC1, encodes a putative polypeptide of 561 aa with a calculated molecular mass of 64 kDa. The putative product includes so-called X and Y domains found in all PI-PLCs identified to date. In mammalian cells, there are three types of PI-PLC, PLC-beta, -gamma, and -delta. The overall structure of the putative AtPLC1 protein is most similar to that of PLC-delta, although the AtPLC1 protein is much smaller than PLCs from other organisms. The recombinant AtPLC1 protein synthesized in Escherichia coli was able to hydrolyze phosphatidylinositol 4,5-bisphosphate and this activity was completely dependent on Ca2+, as observed also for mammalian PI-PLCs. These results suggest that the AtPLC1 gene encodes a genuine PI-PLC of a higher plant. Northern blot analysis showed that the AtPLC1 gene is expressed at very low levels in the plant under normal conditions but is induced to a significant extent under various environmental stresses, such as dehydration, salinity, and low temperature. These observations suggest that AtPLC1 might be involved in the signal-transduction pathways of environmental stresses and that an increase in the level of AtPLC1 might amplify the signal, in a manner that contributes to the adaptation of the plant to these stresses.
Resumo:
The C2 domain is one of the most frequent and widely distributed calcium-binding motifs. Its structure comprises an eight-stranded beta-sandwich with two structural types as if the result of a circular permutation. Combining sequence, structural and modelling information, we have explored, at different levels of granularity, the functional characteristics of several families of C2 domains. At the coarsest level,the similarity correlates with key structural determinants of the C2 domain fold and, at the finest level, with the domain architecture of the proteins containing them, highlighting the functional diversity between the various subfamilies. The functional diversity appears as different conserved surface patches throughout this common fold. In some cases, these patches are related to substrate-binding sites whereas in others they correspond to interfaces of presumably permanent interaction between other domains within the same polypeptide chain. For those related to substrate-binding sites, the predictions overlap with biochemical data in addition to providing some novel observations. For those acting as protein-protein interfaces' our modelling analysis suggests that slight variations between families are a result of not only complementary adaptations in the interfaces involved but also different domain architecture. In the light of the sequence and structural genomic projects, the work presented here shows that modelling approaches along with careful sub-typing of protein families will be a powerful combination for a broader coverage in proteomics. (C) 2003 Elsevier Ltd. All rights reserved.