929 resultados para phlebotomine sand fly larvae
Resumo:
Infection with Leishmania major parasites results in the development of cutaneous ulcerative lesions on the skin. We investigated the protective potential of a single, recombinant histone H1 antigen against cutaneous leishmaniasis in an outbred population of vervet monkeys, using Montanide adjuvant. Protection was assessed by challenging the animals with a mixture of vector sand fly salivary-gland lysate and a low dose of in vitro-derived parasites, thus more closely mimicking natural infection induced by L. major. The course of infection in immunized monkeys was compared with that of animals that had healed from a primary infection and were immune. The monkeys immunized with recombinant histone H1 showed a reduced development of lesion size, compared with controls. Our study therefore illustrates the potential use of histone H1 as a vaccine candidate against cutaneous leishmaniasis in humans.
Resumo:
Leishmania parasites have been plaguing humankind for centuries as a range of skin diseases named the cutaneous leishmaniases (CL). Carried in a hematophagous sand fly, Leishmania usually infests the skin surrounding the bite site, causing a destructive immune response that may persist for months or even years. The various symptomatic outcomes of CL range from a benevolent self- healing reddened bump to extensive open ulcerations, resistant to treatment and resulting in life- changing disfiguration. Many of these more aggressive outcomes are geographically isolated within the habitats of certain Neotropical Leishmania species; where about 15% of cases experience metastatic complications. However, despite this correlation, genetic analysis has revealed no major differences between species causing the various disease forms. We have recently identified a cytoplasmic dsRNA virus within metastatic L. guyanensis parasites that acts as a potent innate immunogen capable of worsening lesionai inflammation and prolonging parasite survival. The dsRNA genome of Leishmania RNA virus (LRV) binds and stimulates Toll-Like-Receptor-3 (TLR3), inducing this destructive inflammation, which we speculate as a factor contributing to the development of metastatic disease. This thesis establishes the first experimental model of LRV-mediated leishmanial metastasis and investigates the role of non-TLR3 viral recognition pathways in LRV-mediated pathology. Viral dsRNA can be detected by various non-TLR3 pattern recognition receptors (PRR); two such PRR groups are the RLRs (Retinoic acid-inducible gene 1 like receptors) and the NLRs (nucleotide- binding domain, leucine-rich repeat containing receptors). The RLRs are designed to detect viral dsRNA in the cytoplasm, while the NLRs react to molecular "danger" signals of cell damage, often oligomerizing into molecular scaffolds called "inflammasomes" that activate a potent inflammatory cascade. Interestingly, we found that neither RLR signalling nor the inflammasome pathway had an effect on LRV-mediated pathology. In contrast, we found a dramatic inflammasome independent effect for the NLR family member, NLRP10, where a knockout mouse model showed little evidence of disease. This phenotype was mimicked in an NLR knockout with which NLRP10 is known to interact: NLRC2. As this pathway induces the chronic inflammatory cell lineage TH17, we investigated the role of its key chronic inflammatory cytokine, IL-17A, in human patients infected by L. guyanensis. Indeed, patients infected with LRV+ parasites had a significantly increased level of IL-17A in lesionai biopsies. Interestingly, LRV presence was also associated with a significant decrease in the correlate of protection, IFN-y. This association was repeated in our murine model, where after we were able to establish the first experimental model of LRV-dependent leishmanial metastasis, which was mediated by IL-17A in the absence of IFN-y. Finally, we tested a new inhibitor of IL-17A secretion, SR1001, and reveal its potential as a Prophylactic immunomodulator and potent parasitotoxic drug. Taken together, these findings provide a basis for anti-IL-17A as a feasible therapeutic intervention to prevent and treat the metastatic complications of cutaneous leishmaniasis. -- Les parasites Leishmania infectent l'homme depuis des siècles causant des affections cutanées, appelées leishmanioses cutanées (LC). Le parasite est transmis par la mouche des sables et réside dans le derme à l'endroit de la piqûre. Au niveau de la peau, le parasite provoque une réponse immunitaire destructrice qui peut persister pendant des mois voire des années. Les symptômes de LC vont d'une simple enflure qui guérit spontanément jusqu' à de vastes ulcérations ouvertes, résistantes aux traitements. Des manifestations plus agressives sont déterminées par les habitats géographiques de certaines espèces de Leishmania. Dans ces cas, environ 15% des patients développent des lésions métastatiques. Aucun «facteur métastatique» n'a encore été trouvé à ce jour dans ces espèces. Récemment, nous avons pu identifier un virus résidant dans certains parasites métastatiques présents en Guyane française (appelé Leishmania-virus, ou LV) et qui confère un avantage de survie à son hôte parasitaire. Ce virus active fortement la réponse inflammatoire, aggravant l'inflammation et prolongeant l'infection parasitaire. Afin de diagnostiquer, prévenir et traiter ces lésions, nous nous sommes intéressés à identifier les composants de la voie de signalisation anti-virale, responsables de la persistance de cette inflammation. Cette étude décrit le premier modèle expérimental de métastases de la leishmaniose induites par LV, et identifie plusieurs composants de la voie inflammatoire anti-virale qui facilite la pathologie métastatique. Contrairement à l'homme, les souris de laboratoire infectées par des Leishmania métastatiques (contenant LV, LV+) ne développent pas de lésions métastatiques et guérissent après quelques semaines d'infection. Après avoir analysé un groupe de patients atteints de leishmaniose en Guyane française, nous avons constaté que les personnes infectées avec les parasites métastatiques LV+ avaient des niveaux significativement plus faibles d'un composant immunitaire protecteur important, appelé l'interféron (IFN)-y. En utilisant des souris génétiquement modifiées, incapables de produire de l'IFN-y, nous avons observé de telles métastases. Après inoculation dans le coussinet plantaire de souris IFN-y7" avec des parasites LV+ ou LV-, nous avons démontré que seules les souris infectées avec des leishmanies ayant LV développent de multiples lésions secondaires sur la queue. Comme nous l'avons observé chez l'homme, ces souris sécrètent une quantité significativement élevée d'un composant inflammatoire destructeur, l'interleukine (IL)-17. IL-17 a été incriminée pour son rôle dans de nombreuses maladies inflammatoires chroniques. On a ainsi trouvé un rôle destructif similaire pour l'IL-17 dans la leishmaniose métastatique. Nous avons confirmé ce rôle en abrogeant IL-17 dans des souris IFN-y7- ce qui ralentit l'apparition des métastases. Nous pouvons donc conclure que les métastases de la leishmaniose sont induites par l'IL-17 en absence d'IFN-v. En analysant plus en détails les voies de signalisation anti-virale induites par LV, nous avons pu exclure d'autres voies d'activation de la réponse inflammatoire. Nous avons ainsi démontré que la signalisation par LV est indépendante de la signalisation inflammatoire de type « inflammasome ». En revanche, nous avons pu y lier plusieurs autres molécules, telles que NLRP10 et NLRC2, connues pour leur synergie avec les réponses inflammatoires. Cette nouvelle voie pourrait être la cible pour des médicaments inhibant l'inflammation. En effet, un nouveau médicament qui bloque la production d'IL-17 chez la souris s'est montré prometteur dans notre modèle : il a réduit le gonflement des lésions ainsi que la charge parasitaire, indiquant que la voie anti-virale /inflammatoire est une approche thérapeutique possible pour prévenir et traiter cette infection négligée.
Resumo:
BACKGROUND: Patients suffering from cutaneous leishmaniasis (CL) caused by New World Leishmania (Viannia) species are at high risk of developing mucosal (ML) or disseminated cutaneous leishmaniasis (DCL). After the formation of a primary skin lesion at the site of the bite by a Leishmania-infected sand fly, the infection can disseminate to form secondary lesions. This metastatic phenotype causes significant morbidity and is often associated with a hyper-inflammatory immune response leading to the destruction of nasopharyngeal tissues in ML, and appearance of nodules or numerous ulcerated skin lesions in DCL. Recently, we connected this aggressive phenotype to the presence of Leishmania RNA virus (LRV) in strains of L. guyanensis, showing that LRV is responsible for elevated parasitaemia, destructive hyper-inflammation and an overall exacerbation of the disease. Further studies of this relationship and the distribution of LRVs in other Leishmania strains and species would benefit from improved methods of viral detection and quantitation, especially ones not dependent on prior knowledge of the viral sequence as LRVs show significant evolutionary divergence. METHODOLOGY/PRINCIPAL FINDINGS: This study reports various techniques, among which, the use of an anti-dsRNA monoclonal antibody (J2) stands out for its specific and quantitative recognition of dsRNA in a sequence-independent fashion. Applications of J2 include immunofluorescence, ELISA and dot blot: techniques complementing an arsenal of other detection tools, such as nucleic acid purification and quantitative real-time-PCR. We evaluate each method as well as demonstrate a successful LRV detection by the J2 antibody in several parasite strains, a freshly isolated patient sample and lesion biopsies of infected mice. CONCLUSIONS/SIGNIFICANCE: We propose that refinements of these methods could be transferred to the field for use as a diagnostic tool in detecting the presence of LRV, and potentially assessing the LRV-related risk of complications in cutaneous leishmaniasis.
Resumo:
Leishmaniasis is widely spread disease found in bath tropical and temperate regions but limited to the habitat of its sand fly vector. lt affects over 12 million people with 2 million new cases each year. As cutaneous leishmaniasis patients show varying levels of immunity to the disease after recovery, the development of a vaccine has much promise as a prevention strategy. Unfortunately however, existing anti-leishmanial vaccines are plagued by safety issues and have only ever shown limited efficacy .So, despite much effort, no effective vaccine is currently available. Recent studies suggest a correlation between the presence of Leishmania RNA virus (LRV) and the development of mucocutaneous leishmaniasis (MCL), which is characterised by the presence of secondary lesions in nasal and buccal mucosa, causing destructive and disfiguring facial lesions. Moreover, recent research has associated the viral presence to treatment fa ilure in patients. ln the first part of this work, we propose that these viral particles may serve as promising vaccine candidates due to their powerful TLR-3 antigenicity, launching an early cell-mediated attack on stimulated cells and thus eliminating their virulent complications. The second part of this work discusses a preliminary study on the lymphocyte immune response against Leishmania guyanensis infection. The lymphocyte response (and in particular, the raie of CDS+ T cells) is controversial and varies greatly between Leishmania species. Here, we illustrate the importance of a small CDS+ T cell subpopulation, expressing the CDSaa+ receptor. These intraepithelial lymphocytes are mainly present in the skin, vagina and intestinal tissue and are best known for their raie in the early immune response against pathogens. Similarly to traditional CDS+ cells, they secrete the tissue-destructive enzymes, perforin and granzyme, which can result in a hyper-inflammatory cutaneous lesion, raising a possibility for their raie in Leishmania infection. lndeed, our initial results in a murine mode( of Leishmania guyanensis infection suggest a pathogenic raie for CDSaa+ T cells. Further research into species-specific immune responses against the various Leishmania parasites is critical to realising the clinical potential of immunotherapy in the treatment and prevention of this disfiguring disease . -- La Leishmaniose est une maladie infectieuse causée par le parasite Leishmania. Elle est localisée dans les régions où son vecteur se reproduit, c'est-à-dire dans des régions tropicales ou tempérées. Cette pathologie affecte 12 millions des personnes dans le monde et 2 millions de nouveaux cas sont recensés chaque année. D'autres facteurs, tels la déforestation, les conditions d'hygiène ou encore l'accès limité aux médicaments, aggravent la pathologie et renforcent sa propagation. Les patients affectés par la leishmaniose et qui arrivent à en guérir, présentent une protection contre une réinfection. Pour cette raison, le développement d'un vaccin reste la meilleure solution pour combattre ce fléau. Mais, à ce jour, et malgré beaucoup d'efforts, aucun vaccin efficace n'a encore été développé. Un autre facteur responsable de l'aggravation de la pathologie et de la résistance de ces parasites aux drogues est un virus qui peut infecter certaines souches de Leishmania. Ce virus, appelé Leishmania RNA virus, peut induire une réponse inflammatoire exagérée, ce qui a comme résultat l'aggravation de la pathologie, la survie et la dissémination de ce parasite au sein de l'hôte infecté. Vu l'absence d'un vaccin contre ce parasite, Leishmania, nous proposons de développer un vaccin non pas contre le parasite lui- même mais contre l'agent qui provoque l'exacerbation de la pathologie, c'est-à-dire le virus. Dans cette étude, nous décrivons le développement d'un vaccin contre LRV, qui empêche le parasite d'induire des inflammations exagérées dans les souris. En d'autres mots, nous essayons de prévenir toutes les complications générées par cet hyperpathogène qu'est le LRV, en utilisant sa capside comme cible pour le développement d'un vaccin. Dans la deuxième partie de ce manuscrit, nous avons aussi étudié plus en détail la réponse immunitaire, et en particulier la réponse des lymphocytes T COB suite à l'infection du parasite Leishmania guyanensis porteur du LRV.
Resumo:
Visceral Leishmaniasis (VL) is caused by protozoan of genus Leishmania and transmitted by sand flies of genus Lutzomyia, which has been adapted to the peridomicile environment where dogs are their mainly food source, increasing the risk for human cases. In this study, techniques of geoprocessing and spatial statistics were utilized as a contribution to understanding the epidemiological dynamics of VL in the urban area of Ilha Solteira, SP.
Resumo:
El flebótomo Lutzomyia spinicrassa es vector de Leishmania braziliensis y tiene amplia distribución en plantaciones de café en Colombia y Venezuela. Metodología: Se estableció una colonia en condiciones de laboratorio a partir de 600 hembras de L. spinicrassa capturadas en el campo y mantenidas a temperatura de 23º C y humedad relativa de 70%. El tiempo de desarrollo desde huevo hasta adulto osciló entre 58 y 78 días, en promedio 11 semanas. Se compararon parámetros poblacionales de la especie obtenidos a partir de cinco generaciones sucesivas mantenidas en grupos, con una generación criada individualmente. Resultados: Se obtuvieron los siguientes parámetros en cada condición experimental: tasa neta de reproducción (6,92 y 7 hembras por hembra por generación), tasa intrínseca de incremento poblacional (0,17 y 0,18 hembras por hembra por semana) y tasa finita de incremento poblacional (1,06 y 1,19 individuos por hembra por semana). Conclusión: Estos datos sugieren que la colonia de L. spinicrassa tuvo un incremento constante durante las seis generaciones analizadas.
Resumo:
This paper presents a male specimen of Sciopemyia sordellii with a rare bilateral anomaly, consisting in eight spines in a style and five in the other. This species has four spines in each style as its normal number. The specimen was captured using a CDC light trap, in a forested area in the State Park ""Floresta Estadual Edmundo Navarro de Andrade"", in May 2004, located in the city of Rio Claro, Sao Paulo State, Brazil. Similar anomaly was once described but this is the first specimen found with a bilateral alteration. It may cause confusion in taxonomic identification and even lead to description of new species, increasing the number of synonymies.
Resumo:
The survival, absolute population size, gonotrophic cycle duration, and temporal and spatial abundance of Nyssomyia neivai (Pinto) were studied in a rural area endemic for American cutaneous leishmaniasis (ACL) in Conchal, Sao Paulo State, southeastern Brazil, using mark-release-recapture techniques and by monitoring population fluctuation. The monthly abundance exhibited a unimodal pattern, with forest and domicile habitats having the highest relative abundances. A total of 1,873 males and 3,557 females were marked and released during the six experiments, of which 4.1-13.0% of males and 4.1-11.8% of females were recaptured. Daily survivorship estimated from the decline in recaptures per day was 0.681 for males and 0.667 for females. Gonotrophic cycle duration was estimated to be 4.0 d. Absolute population size was calculated using the Lincoln Index and ranged from 861 to 4,612 males and from 2,187 to 19,739 females. The low proportion of females that reach the age when they are potentially infective suggests that N. neivai has a low biological capacity to serve as a vector and that factors such as high biting rates and opportunistic feeding behavior would be needed to enable Leishmania (Viannia) braziliensis Vianna transmission. This agreed with the epidemiological pattern of ACL in southeastern Brazil that is characterized by low incidence, with isolated cases acquired principally within domiciliary habitats.
Resumo:
OBJECTIVES To identify the aetiological agents of cutaneous leishmaniasis and to investigate the genetic polymorphism of Leishmania (Viannia) parasites circulating in an area with endemic cutaneous leishmaniasis (CL) in the Atlantic rainforest region of northeastern Brazil. METHODS Leishmania spp. isolates came from three sources: (i) patients diagnosed clinically and parasitologically with CL based on primary lesions, secondary lesions, clinical recidiva, mucocutaneous leishmaniasis and scars; (ii) sentinel hamsters, sylvatic or synanthropic small rodents; and (iii) the sand fly species Lutzomyia whitmani. Isolates were characterised using monoclonal antibodies, multilocus enzyme electrophoresis (MLEE) and polymerase chain reaction-restriction fragment length polymorphism of the internal transcribed spacer region rDNA locus. RESULTS Seventy-seven isolates were obtained and characterised. All isolates were identified as Leishmania (Viannia) braziliensis serodeme 1 based on reactivity to monoclonal antibodies. MLEE identified 10 zymodemes circulating in the study region. Most isolates were classified as zymodemes closely related to L. (V.) braziliensis, but five isolates were classified as Leishmania (Viannia) shawi. All but three of the identified zymodemes have so far been observed only in the study region. Enzootic transmission and multiclonal infection were observed. CONCLUSIONS Our results confirm that transmission cycle complexity and the co-existence of two or more species in the same area can affect the level of genetic polymorphism in a natural Leishmania population. Although it is not possible to make inferences as to the modes of genetic exchange, one can speculate that some of the zymodemes specific to the region are hybrids of L. (V.) braziliensis and L. (V.) shawi.
Resumo:
Blood examination by microhaematocrit and haemoculture of 459 snakes belonging to 37 species revealed 24% trypanosome prevalence in species of Viperidae (Crotalus durissus and Bothrops jararaca) and Colubridae (Pseudoboa nigra). Trypanosome cultures from C. durissus and P. nigra were behaviourally and morphologically indistinguishable. In addition, the growth and morphological features of a trypanosome from the sand fly Viannaniyia tuberculata were similar to those of snake isolates. Cross-infection experiments revealed a lack of host restriction, as snakes of 3 species were infected with the trypanosome from C. durissus. Phylogeny based on ribosomal sequences revealed that snake trypanosomes clustered together with the sand fly trypanosome, forming a new phylogenetic lineage within Trypanosoma closest to a clade of lizard trypanosomes transmitted by sand flies dagger. The clade of trypanosomes from snakes and lizards suggests an association between the evolutionary histories of these trypanosomes and their squamate hosts. Moreover, data strongly indicated that these trypanosomes are transmitted by sand flies. The flaws of the current taxonomy of snake trypanosomes are discussed, and the need for molecular parameters to be adopted is emphasized. To our knowledge, this is the first molecular phylogenetic study of snake trypanosomes.
Resumo:
Este trabalho tem como objetivo verificar o comportamento mecânico e físico de pozolanas artifíciais estabilizadas química e granulometricamente, curadas por dois processos de cura denominados de : autoclave(ATC), que utiliza temperaturas na faixa de 149 a 188°C e câmara à temperatura constante(CTC) que utiliza uma temperatura de ± 21°C. Também fez-se análises estatísticas com a finalidade de se determinar o efeito da energia de moldagem, temperatura e tempo de cura sobre os resultados dos ensaios, para cada processo de cura, além de se determinar modelos matemáticos para previsão de resultados de resistência através de regressões múltiplas e simples. As pozolanas artificiais empregadas foram as cinzas volante e pesada da Usina de Candiota, as quais foram estabilizadas com cal dolomítica hidratada e areia do Rio Guaíba. Os ensaios de resistência à compressão simples , absorção e perda de massa basearam-se nas normas da ABNT e DNER e para os estudos de análise estatística, fez-se anteriormente aos ensaios, dois planejamentos experimentais denominados de Split-Splot e Quadrado Latino, que foram utilizados nos processos de autoclavagem e câmara à temperatura constante, representativamente. Os Corpos-de-Prova curados na câmara à temperatura constante, até os 28 dias de cura, apresentaram resultados de resistências inferiores aqueles curados pelo processo de autoclave. Aos 60 dias de cura suas resistências ficaram na faixa dos valores de Corpos-de-Provas curados pela autoclave nas temperaturas de 149 a 188°C, excessão feita na mistura utilizando areia, onde em todos os períodos de cura estudados,os valores de resistência dos Corpos-de-Prova curados pelo câmara à temperatura constante foram inferiores. A proporção da quantidade de cal e cinza na mistura, bem como o valor da superfície específica da cinza influenciam nos resultados de ensaios, independentemente da variação dos fatores principais. Em termos de análise estatística verificou-se que a energia de moldagem e o tempo de cura são os fatores que apresentam os maiores efeitos sobre os resultados da resistência, para os processos de cura ATC e CTC, respectivamente.
Resumo:
Leishmaniasis are endemic diseases wild spread in the New and Old World, caused by the flagelated protozoan Leishmania. In the New World, the distribution of different forms of leishmaniasis is mostly in tropical regions. In the State of Rio Grande do Norte, Northeast Brazil, 85% of the captured sand flies fauna is Lutzomyia longipalpis. The distribution of the sand fly vector in the state overlaps with the disease distribution, where the presence of sand flies is associated with presence of animals shelters. The aim of this study was to analyse the blood meal preference of sand flies vector from the genus Lutzomyia spp. in laboratory conditions, to verify the vector life cicle at different temperatures sets and to identify the main blood meal source in endemic areas for visceral leishmaniasis (VL) at peri-urban regions of Natal. Sand flies samples were collected from the municipalities of São Gonçalo do Amarante and Nísia Floresta where female sand flies were grouped for the colony maintenance in the laboratory and for the analysis of the preferred source of sand fly blood meal in natural environment. The prevalence of blood meal preference and oviposition for the females sand flies was 97% for Cavia porcellus with oviposition of 19 eggs/female; 97% for Eqqus caballus with 19 eggs/female; 98% for human blood with 14 eggs/female; 71.3% for Didelphis albiventris with 8.4 eggs/female; 73% for Gallus gallus with 14 eggs/female; 86% for Canis familiaris with 10.3 eggs/female; 81.4% for Galea spixii with 26 eggs/female; 36% for Callithrix jachus with 15 eggs/female; 42.8% for Monodelphis domestica with 0% of oviposition. Female sand flies did not take a blood meal from Felis catus. Sand flies life cycle ranged from 32-40 days, with 21-50 oviposition rates approximately. This study also showed that at 32°C the life cycle had 31 days, at 28° C it had 50 days and at 22°C it increased to 79 days. Adjusting the temperature to 35°C the eggs did not hatch, thus blocking the life cycle. A total of 1540 sand flies were captured, among them, 1.310 were male and 230 were female. Whereas 86% of the sand flies captured were Lu. longipalpis as compared to 10.5% for Lu. evandroi and, 3.2% for L. lenti and 0.3% for Lu whitmani. The ratio between female and male sandfly was approximately 6 males to 1 female. In Nísia Floresta, 50.7% of the collected females took their blood meal from armadillo, 12.8% from human. Among the female sand flies captured in São Gonçalo do Amarante, 80 of them were tested for the Leishmania KDNA infectivity where 5% of them were infected with Leishmania chagasi. Female Lutzomyia spp. showed to have an opportunistic blood meal characteristic. The behavioral parameters seem to have a higher influence in the oviposition when compared to the level of total proteins detected in the host s bloodstream. A higher Lu. longipalpis life cycle viability was observed at 28°C. The increase of temperature dropped the life cycle time, which means that the life cycle is modified by temperature range, source of blood meal and humidity. Lu longipalpis was the most specie found in the inner and peridomiciliar environment. In Nísia Floresta, armadillos were the main source of blood meal for Lutzomyia spp. At São Gonçalo do Amarante, humans were the main source of blood meal due to CDC nets placed inside their houses
Resumo:
The sand fly Lutzomyia longipalpis (Diptera: Psychodidae) is currently appointed as the main vector of visceral leishmaniasis in the Americas. The growth of cities in areas originally endemics to American Visceral Leishmaniasis (AVL) resulted in the spread of the disease at the same time that observed the adaptation of this species to the urban environment.Changes in behavior of L.longipalpis that enabled the adapt to increasing losings of biodiversity, as well as the frequent exposure of the vector to insecticides evident in urban areas, could justify the increasing population of the species and consequently the spread of disease for these environments .Thus, we selected sixty houses spread among three areas with increasing stages of occupation of an area endemic for AVL in Teresina-PI. We evaluated the correlation between the density of L.longipalpis captured and different aspects, such as population density of animals, vegetation cover and socio-economic aspects in each house. In addition to the correlations, the feeding preference of the vector between the predominant plant species in the neighborhoods, as well as the presence of metabolic mechanisms of resistance among the captured insects were tested. The results showed that over the growing occupations, represented by three areas, L.longipalpis demonstrate its adaptive nature through an apparent opportunistic behavior in relation to sources of carbohydrates and blood. On the evolutionary point of view, this behavior may have favored its vector competence in urban areas among the limited presence of food sources, as well as in various environments encountered.
Resumo:
The diagnosis of human cutaneous leishmaniasis in small towns is sometimes made without the species identification of the Leishmania, even in areas without previous epidemiological surveys. Here we report the isolation of a Leishmania strain from a patient of Rincão, state of São Paulo, that was identified by isoenzyme characterization as L. (Viannia) braziliensis. Sand fly collections were made in the area where the patient live in order to investigate the likely vector species.
Resumo:
Although many tropical insects carry infectious diseases, cutaneous injury can occur by other mechanisms, for example erucism (envenomation by caterpillars) or lepidopterism (dermatitis from moths). Pararama is a unique form of erucism seen in workers in contact with rubber trees in the Amazon, and it is caused by Premolis larvae, resulting in progressive periarticular fibrosis, ankylosis, and the loss of articulation. Ants and aquatic insects of the Belostomatidae family can cause painful bites and stings. Anaphylactic shock and death can result from the venom of bees and wasps. Beetles can cause vesicular dermatitis via cantharidin or paederin. Myiasis results from fly larvae (maggots) feeding on live or necrotic tissue of humans or other hosts, while New World screwworm fly larvae feed only on living tissue and burrow (ie, screw) more deeply when attempts are made to remove them. Tungiasis is characterized by very pruritic and painful papules and ulcers resulting from a Tunga flea penetrating the host's skin. Dermatologists should be able to diagnose and treat the cutaneous manifestations of these tropical insects and educate their patients on prevention. (J Am Acad Dermatol 2012; 67:339.e1-14.)