907 resultados para phenotype plasticity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detrimental effects of genetic erosion on small isolated populations are widely recognized contrary to their interactions with environmental changes. The ability of genotypes to plastically respond to variability is probably essential for the persistence of these populations. Genetic erosion impact may be exacerbated if inbreeding affects plastic responses or if their maintenance were at higher phenotypic costs. To understand the interplay 'genetic erosion-fitness-phenotypic plasticity', we experimentally compared, in different environments, the larval performances and plastic responses to predation of European tree frogs (Hyla arborea) from isolated and connected populations. Tadpoles from isolated populations were less performant, but the traits affected were environmental dependant. Heterosis observed in crosses between isolated populations allowed attributing their low fitness to inbreeding. Phenotypic plasticity can be maintained in the face of genetic erosion as inducible defences in response to predator were identical in all populations. However, the higher survival and developmental costs for isolated populations in harsh conditions may lead to an additional fitness loss for isolated populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Recently, mesenchymal stem cells (MSC) of perivascular origin have been identified in several organs not including the heart. Using a novel cell isolation protocol, we have isolated cells sharing common characteristics from mouse hearts and pancreas. The aim of the present study was to characterize these cells in vitro.Methods: Cells were isolated from neonatal and adult mouse hearts and pancreas and cultured for more than 6 months. Surface marker expression was analyzed by flow cytometry and immunocytochemistry. Cell differentiation was tested using multiple differentiation media. Insulin production by pancreas-derived cells was tested by dithizone staining.Results: Cells showing a similar, distinctive morphology were obtained from the heart and pancreas after 4-8 weeks of culture. Cells from the two organs also showed a very similar immunophenotype, characterized by expression of c-kit (stem cell factor receptor), CD44, the common leukocyte marker CD45, and the monocytic markers CD11b and CD14. A significant proportion of cardiac and pancreatic cells expressed NG2, a marker for pericytes and other vascular cells. A significant proportion of cardiac, but not of pancreatic cells expressed stem cell antigen-1 (Sca-1). However, cells did not express T, B or dendritic cell markers. Cells of both cardiac and pancreatic origin spontaneously formed "spheres" (spherical cell aggregates similar to "neurospheres" formed by neural stem cells) in vitro. Cardiosphere formation was enhanced by TNF-alpha. Several cardiospheres (but no "pancreatospheres") derived from neonatal (but not adult) cells showed spontaneous rhythmic contractions, thus demonstrating cardiac differentiation (this was confirmed by immunostaining for alpha-sarcomeric actinin). Beating activity was enhanced by low serum conditions. Cells from both organs formed adipocytes, osteocytes and osteocytes under appropriate conditions, the typical differentiation pattern of MSCs. Pancreas-derived cells also formed dithizonepositive insulin-producing cells.Conclusions: We have defined cardiac and pancreatic cell populations that share a common morphology, growth characteristics, and a unique immunophenotype. Expression of perivascular and monocytic markers, along with stem/priogenitor cell markers by these cells suggests a relationship with pericytes-mesoangioblasts and so-called multipotent monocytes. Cells show MSC-typical growth and differentiation patterns, together with tissue-specific differentiation potential: cardiomyocytes for cardiac-derived cells and insulinproducing cells for pancreas-derived cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual perception of body motion is vital for everyday activities such as social interaction, motor learning or car driving. Tumors to the left lateral cerebellum impair visual perception of body motion. However, compensatory potential after cerebellar damage and underlying neural mechanisms remain unknown. In the present study, visual sensitivity to point-light body motion was psychophysically assessed in patient SL with dysplastic gangliocytoma (Lhermitte-Duclos disease) to the left cerebellum before and after neurosurgery, and in a group of healthy matched controls. Brain activity during processing of body motion was assessed by functional magnetic resonance imaging (MRI). Alterations in underlying cerebro-cerebellar circuitry were studied by psychophysiological interaction (PPI) analysis. Visual sensitivity to body motion in patient SL before neurosurgery was substantially lower than in controls, with significant improvement after neurosurgery. Functional MRI in patient SL revealed a similar pattern of cerebellar activation during biological motion processing as in healthy participants, but located more medially, in the left cerebellar lobules III and IX. As in normalcy, PPI analysis showed cerebellar communication with a region in the superior temporal sulcus, but located more anteriorly. The findings demonstrate a potential for recovery of visual body motion processing after cerebellar damage, likely mediated by topographic shifts within the corresponding cerebro-cerebellar circuitry induced by cerebellar reorganization. The outcome is of importance for further understanding of cerebellar plasticity and neural circuits underpinning visual social cognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in PLA2G6 gene have variable phenotypic outcome including infantile neuroaxonal dystrophy, atypical neuroaxonal dystrophy, idiopathic neurodegeneration with brain iron accumulation and Karak syndrome. The cause of this phenotypic variation is so far unknown which impairs both genetic diagnosis and appropriate family counseling. We report detailed clinical, electrophysiological, neuroimaging, histologic, biochemical and genetic characterization of 11 patients, from 6 consanguineous families, who were followed for a period of up to 17 years. Cerebellar atrophy was constant and the earliest feature of the disease preceding brain iron accumulation, leading to the provisional diagnosis of a recessive progressive ataxia in these patients. Ultrastructural characterization of patients' muscle biopsies revealed focal accumulation of granular and membranous material possibly resulting from defective membrane homeostasis caused by disrupted PLA2G6 function. Enzyme studies in one of these muscle biopsies provided evidence for a relatively low mitochondrial content, which is compatible with the structural mitochondrial alterations seen by electron microscopy. Genetic characterization of 11 patients led to the identification of six underlying PLA2G6 gene mutations, five of which are novel. Importantly, by combining clinical and genetic data we have observed that while the phenotype of neurodegeneration associated with PLA2G6 mutations is variable in this cohort of patients belonging to the same ethnic background, it is partially influenced by the genotype, considering the age at onset and the functional disability criteria. Molecular testing for PLA2G6 mutations is, therefore, indicated in childhood-onset ataxia syndromes, if neuroimaging shows cerebellar atrophy with or without evidence of iron accumulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurotoxic effects of the environmentally abundant mycotoxin Ochratoxin A (OTA) were studied in histotypic 3D rat brain cell cultures, comprising all brain cell types. Cultures were exposed to nanomolar OTA concentrations and samples were collected 48h after a single exposure, or after 10 days of repeated administration. OTA-induced changes in gene- and protein expression, as well as alterations in cell morphology were assessed. Forty-eight-hour OTA exposure resulted in a disruption of the neuronal cytoskeleton and reduced expression of several oligodendrocyte-specific markers indicative of demyelination. Astrocyte disturbances were revealed by a decrease in two astrocytic proteins involved in regulation of inflammatory responses, metallothioneins I and II. Repeated OTA administration induced a neuroinflammatory response, as visualized by an increase of isolectin B4 labelled cells, increased expression of pro-inflammatory cytokines, and detection of macrophagic ED1/CD68 positive cells, as well as an upregulation of neurodegenerative M1 microglial phenotype markers. Partial recovery from OTA-induced deleterious effects on oligodendrocytes and astrocytes was achieved by co-treatment with sonic hedgehog (SHH). In addition, metallothionein I and II co-treatment partially restored OTA-induced effects on oligodendrocytes after 48h, and modulated microglial reactivity after 10 days. These results suggest that OTA-exposure affects Shh-signalling, which in turn may influence both oligodendrocytes and astrocytes. Furthermore, the primarily astrocytic proteins MTI/MTII may affect microglial activation. Thus the neuroinflammatory response appears to be downstream of OTA-induced effects on demyelination, axonal instabilities and astrocytes disturbances. In conclusion, repeated OTA-exposure induced a secondary neuroinflammatory response characterized by neurodegenerative M1 microglial activation and pro-inflammatory response that could exacerbate the neurodegenerative process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Auditory spatial representations are likely encoded at a population level within human auditory cortices. We investigated learning-induced plasticity of spatial discrimination in healthy subjects using auditory-evoked potentials (AEPs) and electrical neuroimaging analyses. Stimuli were 100 ms white-noise bursts lateralized with varying interaural time differences. In three experiments, plasticity was induced with 40 min of discrimination training. During training, accuracy significantly improved from near-chance levels to approximately 75%. Before and after training, AEPs were recorded to stimuli presented passively with a more medial sound lateralization outnumbering a more lateral one (7:1). In experiment 1, the same lateralizations were used for training and AEP sessions. Significant AEP modulations to the different lateralizations were evident only after training, indicative of a learning-induced mismatch negativity (MMN). More precisely, this MMN at 195-250 ms after stimulus onset followed from differences in the AEP topography to each stimulus position, indicative of changes in the underlying brain network. In experiment 2, mirror-symmetric locations were used for training and AEP sessions; no training-related AEP modulations or MMN were observed. In experiment 3, the discrimination of trained plus equidistant untrained separations was tested psychophysically before and 0, 6, 24, and 48 h after training. Learning-induced plasticity lasted <6 h, did not generalize to untrained lateralizations, and was not the simple result of strengthening the representation of the trained lateralizations. Thus, learning-induced plasticity of auditory spatial discrimination relies on spatial comparisons, rather than a spatial anchor or a general comparator. Furthermore, cortical auditory representations of space are dynamic and subject to rapid reorganization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calibrated BOLD fMRI is a promising alternative to the classic BOLD contrast due to its reduced venous sensitivity and greater physiological specificity. The delayed adoption of this technique for cognitive studies may stem partly from a lack of information on the reproducibility of these measures in the context of cognitive tasks. In this study we have explored the applicability and reproducibility of a state-of-the-art calibrated BOLD technique using a complex functional task at 7 tesla. Reproducibility measures of BOLD, CBF, CMRO2 flow-metabolism coupling n and the calibration parameter M were compared and interpreted for three ROIs. We found an averaged intra-subject variation of CMRO2 of 8% across runs and 33% across days. BOLD (46% across runs, 36% across days), CBF (33% across runs, 46% across days) and M (41% across days) showed significantly higher intra-subject variability. Inter-subject variability was found to be high for all quantities, though CMRO2 was the most consistent across brain regions. The results of this study provide evidence that calibrated BOLD may be a viable alternative for longitudinal and cognitive MRI studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The T-type Ca(2+) channels encoded by the Ca(V)3 genes are well established electrogenic drivers for burst discharge. Here, using Ca(V)3.3(-/-) mice we found that Ca(V)3.3 channels trigger synaptic plasticity in reticular thalamic neurons. Burst discharge via Ca(V)3.3 channels induced long-term potentiation at thalamoreticular inputs when coactivated with GluN2B-containing NMDA receptors, which are the dominant subtype at these synapses. Notably, oscillatory burst discharge of reticular neurons is typical for sleep-related rhythms, suggesting that sleep contributes to strengthening intrathalamic circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the pathogenesis of type 2 diabetes, hyperglycemia appears when ß cell mass and insulin secretory capacity are no longer sufficient to compensate for insulin resistance. The reduction in ß cell mass results from increased apoptosis. Therefore, finding strategies to preserve ß cell mass and function may be useful for the treatment or prevention of diabetes. Glucagon-like peptide-1 (GLP-1) protects ß cells against apoptosis, increases their glucose competence, and induces their proliferation. Previous studies in the lab of Prof. Bernard Thorens showed that the GLP-1 anti- apoptotic effect was mediated by robust up-regulation of IGF-1R expression, and this was paralleled with an increase in Akt phosphorylation. This effect was dependent not only on increased IGF-1R expression but also on the autocrine secretion of insulin-like growth factor 2 (IGF2). They also demonstrated that GLP-1 up-regulated IGF-1R expression by a protein a kinase A-dependent translational control mechanism. The main aim of this PhD work has been to further investigate the role of the IGF2/IGF-1 Receptor autocrine loop in ß cell function and to determine the physiological role of IGF2 in ß cell plasticity and its regulation by nutrients. This PhD thesis is divided in 3 chapters. The first chapter describes the role of IGF2/IGF-1R autocrine loop in ß cell glucose competence and proliferation. Here using MIN6 cells and primary mouse islets as an experimental model we demonstrated that the glucose competence of these cells was dependent on the level of IGF-1R expression and on IGF2 secretion. Furthermore, we showed that GLP-1-induced primary ß cell proliferation was significantly reduced by Igf-lr gene inactivation and by IGF2 immunoneutralization or knockdown. In the second chapter we examined the role of this IGF2/IGF-1R autocrine loop on the ß cell functional plasticity during ageing, pregnancy, and in response to acute induction of insulin resistance using mice with ß cell-specific inactivation of ig/2. Here we showed a gender-dependent role of ß cell IGF2 in ageing and high fat diet-induced metabolic stress; we demonstrated that the autocrine secretion of IGF2 is essential for ß cell mass adaptation during pregnancy. Further we also showed that this autocrine loop plays an important role in ß cell expansion in response to acute induction of insulin resistance. The aim of the third chapter was to investigate whether we can modulate the expression and secretion of IGF2 by nutrients in order to increase the activity of autocrine loop. Here we showed that glutamine induces IGF2 biosynthesis and its fast secretion through the regulated pathway, a mechanism enhanced in the presence of glucose. Furthermore, we demonstrated that glutamine-mediated Akt phosphorylation is dependent on IGF2 secretion, indicating that glutamine controls the activity of the IGF2/IGF1R autocrine loop through IGF2 up-regulation. In summary, this PhD work highlights that autocrine secretion of IGF2 is required for compensatory ß cell adaptation to ageing, pregnancy, and insulin resistance. Moreover IGF2/IGF1R autocrine loop is regulated by two feeding-related cues, GLP-1 to increase IGF-1R expression and glutamine to control IGF2 biosynthesis and secretion. -- Dans le diabète de type 2, lorsque la sécrétion d'insuline des cellules Beta du pancréas n'est plus suffisante pour compenser la résistance à l'insuline, une hyperglycémie est observée. Cette baisse de sécrétion d'insuline est Causée par la diminution de la masse de cellules Beta suite à l'augmentation du phénomène de mort cellulaire ou « apoptose ». En diabétologie, une des stratégies médicales concerne la préservation des cellules Beta du pancréas. Une des protéines intervenant dans cette fonction est GLP-1 (Glucagon-like peptide-1). GLP-1 est capable de protéger les cellules Beta contre la mort cellulaire et d'induire leur prolifération. Des études précédemment menées dans le laboratoire du Professeur Bernard Thorens ont montrées que l'activité « anti-apoptotique » de GLP-1 est le résultat l'une augmentation de l'expression du gène IGF-1R sous la dépendance de la sécrétion autocrine d'IGF2 (Insulin-Like Growth Factor). Le but de mon travail de thèse aura été d'étudier le mécanisme de la régulation de GLP-1 par IGF2 et plus précisément de déterminer le rôle physiologique d'IGF2 dans la plasticité des cellules ß ainsi que sa régulation par les nutriments. Ce manuscrit est ainsi divisé en trois chapitres : Le premier chapitre décrit la fonction d'IGF2/IGF- R1 dans la réponse des cellules Beta au glucose ainsi que dans leur capacité à proliférer. Dans ce chapitre nous avons montré l'importance du niveau d'expression d'IGFR-1 et de la sécrétion d'IGF2 dans la régulation du métabolisme du glucose. Dans un deuxième chapitre, nous étudions la boucle de régulation IGF2/IGF-R1 sur la plasticité des cellules Beta lors du vieillissement, de la grossesse ainsi que dans un modèle de souris résistantes à l'insuline. Cette étude met en évidence un dimorphisme sexuel dans le rôle d'IGF2 lors du vieillissement et lors d'un stress métabolique. Nous montrons également l'importance d'IGF2 pour l'adaptation des cellules Beta tout au long de la grossesse ou lors du phénomène de résistance à l'insuline. Dans un troisième chapitre, nous mettons en évidence la possibilité de moduler l'expression et la sécrétion d'IGF2 par les nutriments. En conclusion, ce travail de thèse aura permis de mettre en évidence l'importance d'IGF2 dans la plasticité des cellules ß, une plasticité indispensable lors du vieillissement, de la grossesse ou encore dans le cas d'une résistance à l'insuline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated morphometric brain changes in patients with Parkinson's disease (PD) that are associated with balance training. A total of 20 patients and 16 healthy matched controls learned a balance task over a period of 6 weeks. Balance testing and structural magnetic resonance imaging were performed before and after 2, 4, and 6 training weeks. Balance performance was re-evaluated after ∼20 months. Balance training resulted in performance improvements in both groups. Voxel-based morphometry revealed learning-dependent gray matter changes in the left hippocampus in healthy controls. In PD patients, performance improvements were correlated with gray matter changes in the right anterior precuneus, left inferior parietal cortex, left ventral premotor cortex, bilateral anterior cingulate cortex, and left middle temporal gyrus. Furthermore, a TIME × GROUP interaction analysis revealed time-dependent gray matter changes in the right cerebellum. Our results highlight training-induced balance improvements in PD patients that may be associated with specific patterns of structural brain plasticity. In summary, we provide novel evidence for the capacity of the human brain to undergo learning-related structural plasticity even in a pathophysiological disease state such as in PD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How the apical-basal axis of polarity is established in embryogenesis is still a mystery in plant development. This axis appeared specifically compromised by mutations in the Arabidopsis GNOM gene. Surprisingly, GNOM encodes an ARF guanine-nucleotide exchange factor (ARF-GEF) that regulates the formation of vesicles in membrane trafficking. In-depth functional analysis of GNOM and its closest relative, GNOM-LIKE 1 (GNL1), has provided a mechanistic explanation for the development-specific role of a seemingly mundane trafficking regulator. The current model proposes that GNOM is specifically involved in the endosomal recycling of the auxin-efflux carrier PIN1 to the basal plasma membrane in provascular cells, which in turn is required for the accumulation of the plant hormone auxin at the future root pole through polar auxin transport. Thus, the analysis of GNOM highlights the importance of cell-biological processes for a mechanistic understanding of development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorectal cancer (CRC) is a major cause of cancer mortality. Whereas some patients respond well to therapy, others do not, and thus more precise, individualized treatment strategies are needed. To that end, we analyzed gene expression profiles from 1,290 CRC tumors using consensus-based unsupervised clustering. The resultant clusters were then associated with therapeutic response data to the epidermal growth factor receptor-targeted drug cetuximab in 80 patients. The results of these studies define six clinically relevant CRC subtypes. Each subtype shares similarities to distinct cell types within the normal colon crypt and shows differing degrees of 'stemness' and Wnt signaling. Subtype-specific gene signatures are proposed to identify these subtypes. Three subtypes have markedly better disease-free survival (DFS) after surgical resection, suggesting these patients might be spared from the adverse effects of chemotherapy when they have localized disease. One of these three subtypes, identified by filamin A expression, does not respond to cetuximab but may respond to cMET receptor tyrosine kinase inhibitors in the metastatic setting. Two other subtypes, with poor and intermediate DFS, associate with improved response to the chemotherapy regimen FOLFIRI in adjuvant or metastatic settings. Development of clinically deployable assays for these subtypes and of subtype-specific therapies may contribute to more effective management of this challenging disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the quantitative genetics of resistance to parasitism is key to appraise host evolutionary responses to parasite selection. Here, we studied effects of common origin (i.e. genetic and pre-hatching parental effects) and common rearing environment (i.e. post-hatching parental effects and other environment effects) on variance in ectoparasite load in nestling Alpine swifts (Apus melba). This colonial bird is intensely parasitized by blood sucking louse-flies that impair nestling development and survival. By cross-fostering half of the hatchlings between pairs of nests, we show strong significant effect of common rearing environment on variance (90.7% in 2002 and 90.9% in 2003) in the number of louse-flies per nestling and no significant effect of common origin on variance in the number of louse-flies per nestling. In contrast, significant effects of common origin were found for all the nestling morphological traits (i.e. body mass, wing length, tail length, fork length and sternum length) under investigation. Hence, our study suggests that genetic and pre-hatching parental effects play little role in the distribution of parasites among nestling Alpine swifts, and thus that nestlings have only limited scope for evolutionary responses against parasites. Our results highlight the need to take into consideration environmental factors, including the evolution of post-hatching parental effects such as nest sanitation, in our understanding of host-parasite relationships.