946 resultados para partial least square
Resumo:
Background/Purpose: The primary treatment goals for gouty arthritis (GA) are rapid relief of pain and inflammation during acute attacks, and long-term hyperuricemia management. A post-hoc analysis of 2 pivotal trials was performed to assess efficacy and safety of canakinumab (CAN), a fully human monoclonal anti-IL-1_ antibody, vs triamcinolone acetonide (TA) in GA patients unable to use NSAIDs and colchicine, and who were on stable urate lowering therapy (ULT) or unable to use ULT. Methods: In these 12-week, randomized, multicenter, double-blind, double-dummy, active-controlled studies (_-RELIEVED and _-RELIEVED II), patients had to have frequent attacks (_3 attacks in previous year) meeting preliminary GA ACR 1977 criteria, and were unresponsive, intolerant, or contraindicated to NSAIDs and/or colchicine, and if on ULT, ULT was stable. Patients were randomized during an acute attack to single dose CAN 150 mg s.c. or TA 40 mg i.m. and were redosed "on demand" for each new attack. Patients completing the core studies were enrolled into blinded 12-week extension studies to further investigate on-demand use of CAN vs TA for new attacks. The subpopulation selected for this post-hoc analysis was (a) unable to use NSAIDs and colchicine due to contraindication, intolerance or lack of efficacy for these drugs, and (b) currently on ULT, or contraindication or previous failure of ULT, as determined by investigators. Subpopulation comprised 101 patients (51 CAN; 50 TA) out of 454 total. Results: Several co-morbidities, including hypertension (56%), obesity (56%), diabetes (18%), and ischemic heart disease (13%) were reported in 90% of this subpopulation. Pain intensity (VAS 100 mm scale) was comparable between CAN and TA treatment groups at baseline (least-square [LS] mean 74.6 and 74.4 mm, respectively). A significantly lower pain score was reported with CAN vs TA at 72 hours post dose (1st co-primary endpoint on baseline flare; LS mean, 23.5 vs 33.6 mm; difference _10.2 mm; 95% CI, _19.9, _0.4; P_0.0208 [1-sided]). CAN significantly reduced risk for their first new attacks by 61% vs TA (HR 0.39; 95% CI, 0.17-0.91, P_0.0151 [1-sided]) for the first 12 weeks (2nd co-primary endpoint), and by 61% vs TA (HR 0.39; 95% CI, 0.19-0.79, P_0.0047 [1-sided]) over 24 weeks. Serum urate levels increased for CAN vs TA with mean change from baseline reaching a maximum of _0.7 _ 2.0 vs _0.1 _ 1.8 mg/dL at 8 weeks, and _0.3 _ 2.0 vs _0.2 _ 1.4 mg/dL at end of study (all had GA attack at baseline). Adverse Events (AEs) were reported in 33 (66%) CAN and 24 (47.1%) TA patients. Infections and infestations were the most common AEs, reported in 10 (20%) and 5 (10%) patients treated with CAN and TA respectively. Incidence of SAEs was comparable between CAN (gastritis, gastroenteritis, chronic renal failure) and TA (aortic valve incompetence, cardiomyopathy, aortic stenosis, diarrohea, nausea, vomiting, bicuspid aortic valve) groups (2 [4.0%] vs 2 [3.9%]). Conclusion: CAN provided superior pain relief and reduced risk of new attack in highly-comorbid GA patients unable to use NSAIDs and colchicine, and who were currently on stable ULT or unable to use ULT. The safety profile in this post-hoc subpopulation was consistent with the overall _-RELIEVED and _-RELIEVED II population.
Resumo:
Counterfeit pharmaceutical products have become a widespread problem in the last decade. Various analytical techniques have been applied to discriminate between genuine and counterfeit products. Among these, Near-infrared (NIR) and Raman spectroscopy provided promising results.The present study offers a methodology allowing to provide more valuable information fororganisations engaged in the fight against counterfeiting of medicines.A database was established by analyzing counterfeits of a particular pharmaceutical product using Near-infrared (NIR) and Raman spectroscopy. Unsupervised chemometric techniques (i.e. principal component analysis - PCA and hierarchical cluster analysis - HCA) were implemented to identify the classes within the datasets. Gas Chromatography coupled to Mass Spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to determine the number of different chemical profiles within the counterfeits. A comparison with the classes established by NIR and Raman spectroscopy allowed to evaluate the discriminating power provided by these techniques. Supervised classifiers (i.e. k-Nearest Neighbors, Partial Least Squares Discriminant Analysis, Probabilistic Neural Networks and Counterpropagation Artificial Neural Networks) were applied on the acquired NIR and Raman spectra and the results were compared to the ones provided by the unsupervised classifiers.The retained strategy for routine applications, founded on the classes identified by NIR and Raman spectroscopy, uses a classification algorithm based on distance measures and Receiver Operating Characteristics (ROC) curves. The model is able to compare the spectrum of a new counterfeit with that of previously analyzed products and to determine if a new specimen belongs to one of the existing classes, consequently allowing to establish a link with other counterfeits of the database.
Resumo:
This article presents an experimental study about the classification ability of several classifiers for multi-classclassification of cannabis seedlings. As the cultivation of drug type cannabis is forbidden in Switzerland lawenforcement authorities regularly ask forensic laboratories to determinate the chemotype of a seized cannabisplant and then to conclude if the plantation is legal or not. This classification is mainly performed when theplant is mature as required by the EU official protocol and then the classification of cannabis seedlings is a timeconsuming and costly procedure. A previous study made by the authors has investigated this problematic [1]and showed that it is possible to differentiate between drug type (illegal) and fibre type (legal) cannabis at anearly stage of growth using gas chromatography interfaced with mass spectrometry (GC-MS) based on therelative proportions of eight major leaf compounds. The aims of the present work are on one hand to continueformer work and to optimize the methodology for the discrimination of drug- and fibre type cannabisdeveloped in the previous study and on the other hand to investigate the possibility to predict illegal cannabisvarieties. Seven classifiers for differentiating between cannabis seedlings are evaluated in this paper, namelyLinear Discriminant Analysis (LDA), Partial Least Squares Discriminant Analysis (PLS-DA), Nearest NeighbourClassification (NNC), Learning Vector Quantization (LVQ), Radial Basis Function Support Vector Machines(RBF SVMs), Random Forest (RF) and Artificial Neural Networks (ANN). The performance of each method wasassessed using the same analytical dataset that consists of 861 samples split into drug- and fibre type cannabiswith drug type cannabis being made up of 12 varieties (i.e. 12 classes). The results show that linear classifiersare not able to manage the distribution of classes in which some overlap areas exist for both classificationproblems. Unlike linear classifiers, NNC and RBF SVMs best differentiate cannabis samples both for 2-class and12-class classifications with average classification results up to 99% and 98%, respectively. Furthermore, RBFSVMs correctly classified into drug type cannabis the independent validation set, which consists of cannabisplants coming from police seizures. In forensic case work this study shows that the discrimination betweencannabis samples at an early stage of growth is possible with fairly high classification performance fordiscriminating between cannabis chemotypes or between drug type cannabis varieties.
Resumo:
A aplicação de técnicas espectroscópicas que utilizam a radiação infravermelha (NIRS-Near Infrared Spectroscopy e DRIFTS-Diffuse Reflectance Fourier Transformed Spectroscopy) na análise inorgânica do solo tem sido proposta desde a década de 1970, mas até os dias atuais são raros os métodos implementados rotineiramente no Brasil. Isso deve-se à dificuldade em construir modelos de calibração, por meio de métodos estatísticos multivariados, utilizando-se amostras reais de solo, de constituição complexa, que varia geograficamente e de acordo com o manejo. Por isso, os objetivos deste trabalho foram construir modelos de calibração em NIRS e DRIFTS para a quantificação das frações de argila e areia, em amostras de solos de classes diferentes - Latossolo Vermelho (predominante), Nitossolo, Argissolo Vermelho e Neossolo Quartzarênico - e avaliar qual dessas duas técnicas é mais adequada para essa finalidade, assim como a interferência do agrupamento de amostras e da seleção de variáveis espectrais na qualidade desses modelos. Para isso, valores de referência obtidos pelo método do densímetro, método largamente utilizado nos laboratórios de análise de solo, foram correlacionados com valores de absorbância em NIRS e DRIFTS pela ferramenta estatística PLS (Partial Least Squares), obtendo-se altos coeficientes de determinação (R²), de 0,95, 0,90 e 0,91 para argila, silte e areia, respectivamente, na validação externa. Isso confirma a aplicabilidade das técnicas espectroscópicas na análise granulométrica do solo para fins agrícolas. O agrupamento das amostras segundo a localização e a seleção de variáveis espectrais pouco influenciou na qualidade dos modelos. A técnica espectroscópica mais indicada para essa finalidade foi a DRIFTS.
Resumo:
Résumé : La radiothérapie par modulation d'intensité (IMRT) est une technique de traitement qui utilise des faisceaux dont la fluence de rayonnement est modulée. L'IMRT, largement utilisée dans les pays industrialisés, permet d'atteindre une meilleure homogénéité de la dose à l'intérieur du volume cible et de réduire la dose aux organes à risque. Une méthode usuelle pour réaliser pratiquement la modulation des faisceaux est de sommer de petits faisceaux (segments) qui ont la même incidence. Cette technique est appelée IMRT step-and-shoot. Dans le contexte clinique, il est nécessaire de vérifier les plans de traitement des patients avant la première irradiation. Cette question n'est toujours pas résolue de manière satisfaisante. En effet, un calcul indépendant des unités moniteur (représentatif de la pondération des chaque segment) ne peut pas être réalisé pour les traitements IMRT step-and-shoot, car les poids des segments ne sont pas connus à priori, mais calculés au moment de la planification inverse. Par ailleurs, la vérification des plans de traitement par comparaison avec des mesures prend du temps et ne restitue pas la géométrie exacte du traitement. Dans ce travail, une méthode indépendante de calcul des plans de traitement IMRT step-and-shoot est décrite. Cette méthode est basée sur le code Monte Carlo EGSnrc/BEAMnrc, dont la modélisation de la tête de l'accélérateur linéaire a été validée dans une large gamme de situations. Les segments d'un plan de traitement IMRT sont simulés individuellement dans la géométrie exacte du traitement. Ensuite, les distributions de dose sont converties en dose absorbée dans l'eau par unité moniteur. La dose totale du traitement dans chaque élément de volume du patient (voxel) peut être exprimée comme une équation matricielle linéaire des unités moniteur et de la dose par unité moniteur de chacun des faisceaux. La résolution de cette équation est effectuée par l'inversion d'une matrice à l'aide de l'algorithme dit Non-Negative Least Square fit (NNLS). L'ensemble des voxels contenus dans le volume patient ne pouvant être utilisés dans le calcul pour des raisons de limitations informatiques, plusieurs possibilités de sélection ont été testées. Le meilleur choix consiste à utiliser les voxels contenus dans le Volume Cible de Planification (PTV). La méthode proposée dans ce travail a été testée avec huit cas cliniques représentatifs des traitements habituels de radiothérapie. Les unités moniteur obtenues conduisent à des distributions de dose globale cliniquement équivalentes à celles issues du logiciel de planification des traitements. Ainsi, cette méthode indépendante de calcul des unités moniteur pour l'IMRT step-andshootest validée pour une utilisation clinique. Par analogie, il serait possible d'envisager d'appliquer une méthode similaire pour d'autres modalités de traitement comme par exemple la tomothérapie. Abstract : Intensity Modulated RadioTherapy (IMRT) is a treatment technique that uses modulated beam fluence. IMRT is now widespread in more advanced countries, due to its improvement of dose conformation around target volume, and its ability to lower doses to organs at risk in complex clinical cases. One way to carry out beam modulation is to sum smaller beams (beamlets) with the same incidence. This technique is called step-and-shoot IMRT. In a clinical context, it is necessary to verify treatment plans before the first irradiation. IMRT Plan verification is still an issue for this technique. Independent monitor unit calculation (representative of the weight of each beamlet) can indeed not be performed for IMRT step-and-shoot, because beamlet weights are not known a priori, but calculated by inverse planning. Besides, treatment plan verification by comparison with measured data is time consuming and performed in a simple geometry, usually in a cubic water phantom with all machine angles set to zero. In this work, an independent method for monitor unit calculation for step-and-shoot IMRT is described. This method is based on the Monte Carlo code EGSnrc/BEAMnrc. The Monte Carlo model of the head of the linear accelerator is validated by comparison of simulated and measured dose distributions in a large range of situations. The beamlets of an IMRT treatment plan are calculated individually by Monte Carlo, in the exact geometry of the treatment. Then, the dose distributions of the beamlets are converted in absorbed dose to water per monitor unit. The dose of the whole treatment in each volume element (voxel) can be expressed through a linear matrix equation of the monitor units and dose per monitor unit of every beamlets. This equation is solved by a Non-Negative Least Sqvare fif algorithm (NNLS). However, not every voxels inside the patient volume can be used in order to solve this equation, because of computer limitations. Several ways of voxel selection have been tested and the best choice consists in using voxels inside the Planning Target Volume (PTV). The method presented in this work was tested with eight clinical cases, which were representative of usual radiotherapy treatments. The monitor units obtained lead to clinically equivalent global dose distributions. Thus, this independent monitor unit calculation method for step-and-shoot IMRT is validated and can therefore be used in a clinical routine. It would be possible to consider applying a similar method for other treatment modalities, such as for instance tomotherapy or volumetric modulated arc therapy.
Resumo:
Väitöstutkimuksessa on tarkasteltuinfrapunaspektroskopian ja monimuuttujaisten aineistonkäsittelymenetelmien soveltamista kiteytysprosessin monitoroinnissa ja kidemäisen tuotteen analysoinnissa. Parhaillaan kiteytysprosessitutkimuksessa maailmanlaajuisesti tutkitaan intensiivisesti erilaisten mittausmenetelmien soveltamista kiteytysprosessin ilmiöidenjatkuvaan mittaamiseen niin nestefaasista kuin syntyvistä kiteistäkin. Lisäksi tuotteen karakterisointi on välttämätöntä tuotteen laadun varmistamiseksi. Erityisesti lääkeaineiden valmistuksessa kiinnostusta tämäntyyppiseen tutkimukseen edistää Yhdysvaltain elintarvike- ja lääkeaineviraston (FDA) prosessianalyyttisiintekniikoihin (PAT) liittyvä ohjeistus, jossa määritellään laajasti vaatimukset lääkeaineiden valmistuksessa ja tuotteen karakterisoinnissa tarvittaville mittauksille turvallisten valmistusprosessien takaamiseksi. Jäähdytyskiteytyson erityisesti lääketeollisuudessa paljon käytetty erotusmenetelmä kiinteän raakatuotteen puhdistuksessa. Menetelmässä puhdistettava kiinteä raaka-aine liuotetaan sopivaan liuottimeen suhteellisen korkeassa lämpötilassa. Puhdistettavan aineen liukoisuus käytettävään liuottimeen laskee lämpötilan laskiessa, joten systeemiä jäähdytettäessä liuenneen aineen konsentraatio prosessissa ylittää liukoisuuskonsentraation. Tällaiseen ylikylläiseen systeemiin pyrkii muodostumaan uusia kiteitä tai olemassa olevat kiteet kasvavat. Ylikylläisyys on yksi tärkeimmistä kidetuotteen laatuun vaikuttavista tekijöistä. Jäähdytyskiteytyksessä syntyvän tuotteen ominaisuuksiin voidaan vaikuttaa mm. liuottimen valinnalla, jäähdytyprofiililla ja sekoituksella. Lisäksi kiteytysprosessin käynnistymisvaihe eli ensimmäisten kiteiden muodostumishetki vaikuttaa tuotteen ominaisuuksiin. Kidemäisen tuotteen laatu määritellään kiteiden keskimääräisen koon, koko- ja muotojakaumansekä puhtauden perusteella. Lääketeollisuudessa on usein vaatimuksena, että tuote edustaa tiettyä polymorfimuotoa, mikä tarkoittaa molekyylien kykyä järjestäytyä kidehilassa usealla eri tavalla. Edellä mainitut ominaisuudet vaikuttavat tuotteen jatkokäsiteltävyyteen, kuten mm. suodattuvuuteen, jauhautuvuuteen ja tabletoitavuuteen. Lisäksi polymorfiamuodolla on vaikutusta moniin tuotteen käytettävyysominaisuuksiin, kuten esim. lääkeaineen liukenemisnopeuteen elimistössä. Väitöstyössä on tutkittu sulfatiatsolin jäähdytyskiteytystä käyttäen useita eri liuotinseoksia ja jäähdytysprofiileja sekä tarkasteltu näiden tekijöiden vaikutustatuotteen laatuominaisuuksiin. Infrapunaspektroskopia on laajalti kemian alan tutkimuksissa sovellettava menetelmä. Siinä mitataan tutkittavan näytteenmolekyylien värähtelyjen aiheuttamia spektrimuutoksia IR alueella. Tutkimuksessa prosessinaikaiset mittaukset toteutettiin in-situ reaktoriin sijoitettavalla uppoanturilla käyttäen vaimennettuun kokonaisheijastukseen (ATR) perustuvaa Fourier muunnettua infrapuna (FTIR) spektroskopiaa. Jauhemaiset näytteet mitattiin off-line diffuusioheijastukseen (DRIFT) perustuvalla FTIR spektroskopialla. Monimuuttujamenetelmillä (kemometria) voidaan useita satoja, jopa tuhansia muuttujia käsittävä spektridata jalostaa kvalitatiiviseksi (laadulliseksi) tai kvantitatiiviseksi (määrälliseksi) prosessia kuvaavaksi informaatioksi. Väitöstyössä tarkasteltiin laajasti erilaisten monimuuttujamenetelmien soveltamista mahdollisimman monipuolisen prosessia kuvaavan informaation saamiseksi mitatusta spektriaineistosta. Väitöstyön tuloksena on ehdotettu kalibrointirutiini liuenneen aineen konsentraation ja edelleen ylikylläisyystason mittaamiseksi kiteytysprosessin aikana. Kalibrointirutiinin kehittämiseen kuuluivat aineiston hyvyyden tarkastelumenetelmät, aineiston esikäsittelymenetelmät, varsinainen kalibrointimallinnus sekä mallin validointi. Näin saadaan reaaliaikaista informaatiota kiteytysprosessin ajavasta voimasta, mikä edelleen parantaa kyseisen prosessin tuntemusta ja hallittavuutta. Ylikylläisyystason vaikutuksia syntyvän kidetuotteen laatuun seurattiin usein kiteytyskokein. Työssä on esitetty myös monimuuttujaiseen tilastolliseen prosessinseurantaan perustuva menetelmä, jolla voidaan ennustaa spontaania primääristä ytimenmuodostumishetkeä mitatusta spektriaineistosta sekä mahdollisesti päätellä ydintymisessä syntyvä polymorfimuoto. Ehdotettua menetelmää hyödyntäen voidaan paitsi ennakoida kideytimien muodostumista myös havaita mahdolliset häiriötilanteet kiteytysprosessin alkuhetkillä. Syntyvää polymorfimuotoa ennustamalla voidaan havaita ei-toivotun polymorfin ydintyminen,ja mahdollisesti muuttaa kiteytyksen ohjausta halutun polymorfimuodon saavuttamiseksi. Monimuuttujamenetelmiä sovellettiin myös kiteytyspanosten välisen vaihtelun määrittämiseen mitatusta spektriaineistosta. Tämäntyyppisestä analyysistä saatua informaatiota voidaan hyödyntää kiteytysprosessien suunnittelussa ja optimoinnissa. Väitöstyössä testattiin IR spektroskopian ja erilaisten monimuuttujamenetelmien soveltuvuutta kidetuotteen polymorfikoostumuksen nopeaan määritykseen. Jauhemaisten näytteiden luokittelu eri polymorfeja sisältäviin näytteisiin voitiin tehdä käyttäen tarkoitukseen soveltuvia monimuuttujaisia luokittelumenetelmiä. Tämä tarjoaa nopean menetelmän jauhemaisen näytteen polymorfikoostumuksen karkeaan arviointiin, eli siihen mitä yksittäistä polymorfia kyseinen näyte pääasiassa sisältää. Varsinainen kvantitatiivinen analyysi, eli sen selvittäminen paljonko esim. painoprosentteina näyte sisältää eri polymorfeja, vaatii kaikki polymorfit kattavan fysikaalisen kalibrointisarjan, mikä voi olla puhtaiden polymorfien huonon saatavuuden takia hankalaa.
Resumo:
Sähkönkulutuksen lyhyen aikavälin ennustamista on tutkittu jo pitkään. Pohjoismaisien sähkömarkkinoiden vapautuminen on vaikuttanut sähkönkulutuksen ennustamiseen. Aluksi työssä perehdyttiin aiheeseen liittyvään kirjallisuuteen. Sähkönkulutuksen käyttäytymistä tutkittiin eri aikoina. Lämpötila tilastojen käyttökelpoisuutta arvioitiin sähkönkulutusennustetta ajatellen. Kulutus ennusteet tehtiin tunneittain ja ennustejaksona käytettiin yhtä viikkoa. Työssä tutkittiin sähkönkulutuksen- ja lämpötiladatan saatavuutta ja laatua Nord Poolin markkina-alueelta. Syötettävien tietojen ominaisuudet vaikuttavat tunnittaiseen sähkönkulutuksen ennustamiseen. Sähkönkulutuksen ennustamista varten mallinnettiin kaksi lähestymistapaa. Testattavina malleina käytettiin regressiomallia ja autoregressiivistä mallia (autoregressive model, ARX). Mallien parametrit estimoitiin pienimmän neliösumman menetelmällä. Tulokset osoittavat että kulutus- ja lämpötiladata on tarkastettava jälkikäteen koska reaaliaikaisen syötetietojen laatu on huonoa. Lämpötila vaikuttaa kulutukseen talvella, mutta se voidaan jättää huomiotta kesäkaudella. Regressiomalli on vakaampi kuin ARX malli. Regressiomallin virhetermi voidaan mallintaa aikasarjamallia hyväksikäyttäen.
Identification-commitment inventory (ICI-Model): confirmatory factor analysis and construct validity
Resumo:
The aim of this study is to confirm the factorial structure of the Identification-Commitment Inventory (ICI) developed within the frame of the Human System Audit (HSA) (Quijano et al. in Revist Psicol Soc Apl 10(2):27-61, 2000; Pap Psicól Revist Col Of Psicó 29:92-106, 2008). Commitment and identification are understood by the HSA at an individual level as part of the quality of human processes and resources in an organization; and therefore as antecedents of important organizational outcomes, such as personnel turnover intentions, organizational citizenship behavior, etc. (Meyer et al. in J Org Behav 27:665-683, 2006). The theoretical integrative model which underlies ICI Quijano et al. (2000) was tested in a sample (N = 625) of workers in a Spanish public hospital. Confirmatory factor analysis through structural equation modeling was performed. Elliptical least square solution was chosen as estimator procedure on account of non-normal distribution of the variables. The results confirm the goodness of fit of an integrative model, which underlies the relation between Commitment and Identification, although each one is operatively different.
Resumo:
The classical theory of collision induced emission (CIE) from pairs of dissimilar rare gas atoms was developed in Paper I [D. Reguera and G. Birnbaum, J. Chem. Phys. 125, 184304 (2006)] from a knowledge of the straight line collision trajectory and the assumption that the magnitude of the dipole could be represented by an exponential function of the inter-nuclear distance. This theory is extended here to deal with other functional forms of the induced dipole as revealed by ab initio calculations. Accurate analytical expression for the CIE can be obtained by least square fitting of the ab initio values of the dipole as a function of inter-atomic separation using a sum of exponentials and then proceeding as in Paper I. However, we also show how the multi-exponential fit can be replaced by a simpler fit using only two analytic functions. Our analysis is applied to the polar molecules HF and HBr. Unlike the rare gas atoms considered previously, these atomic pairs form stable bound diatomic molecules. We show that, interestingly, the spectra of these reactive molecules are characterized by the presence of multiple peaks. We also discuss the CIE arising from half collisions in excited electronic states, which in principle could be probed in photo-dissociation experiments.
Resumo:
The least square method is analyzed. The basic aspects of the method are discussed. Emphasis is given in procedures that allow a simple memorization of the basic equations associated with the linear and non linear least square method, polinomial regression and multilinear method.
Resumo:
The determination of zirconium-hafnium mixtures is one of the most critical problem of the analytical chemistry, on account of the close similarity of their chemical properties. The spectrophotometric determination proposed by Yagodin et al. show not many practical applications due to the significant spectral interference on the 200-220 nm region. In this work we propound the use of a multivariate calibration method called partial least squares ( PLS ) for colorimetric determination of these mixtures. By using PLS and 16 calibration mixtures we obtained a model which permits determination of zirconium and hafnium with accuracy of about 1-2% and 10-20%, respectively. Using conventional univariate calibration the inaccuracy of the determination is about 10-25% for zirconium and above 57% for hafnium.
Resumo:
The aim of this work is to present a tutorial on Multivariate Calibration, a tool which is nowadays necessary in basically most laboratories but very often misused. The basic concepts of preprocessing, principal component analysis (PCA), principal component regression (PCR) and partial least squares (PLS) are given. The two basic steps on any calibration procedure: model building and validation are fully discussed. The concepts of cross validation (to determine the number of factors to be used in the model), leverage and studentized residuals (to detect outliers) for the validation step are given. The whole calibration procedure is illustrated using spectra recorded for ternary mixtures of 2,4,6 trinitrophenolate, 2,4 dinitrophenolate and 2,5 dinitrophenolate followed by the concentration prediction of these three chemical species during a diffusion experiment through a hydrophobic liquid membrane. MATLAB software is used for numerical calculations. Most of the commands for the analysis are provided in order to allow a non-specialist to follow step by step the analysis.
Resumo:
Genetic algorithm was used for variable selection in simultaneous determination of mixtures of glucose, maltose and fructose by mid infrared spectroscopy. Different models, using partial least squares (PLS) and multiple linear regression (MLR) with and without data pre-processing, were used. Based on the results obtained, it was verified that a simpler model (multiple linear regression with variable selection by genetic algorithm) produces results comparable to more complex methods (partial least squares). The relative errors obtained for the best model was around 3% for the sugar determination, which is acceptable for this kind of determination.
Estudo QSPR sobre os coeficientes de partição: descritores mecânico-quânticos e análise multivariada
Resumo:
Quantum chemistry and multivariate analysis were used to estimate the partition coefficients between n-octanol and water for a serie of 188 compounds, with the values of the q 2 until 0.86 for crossvalidation test. The quantum-mechanical descriptors are obtained with ab initio calculation, using the solvation effects of the Polarizable Continuum Method. Two different Hartree-Fock bases were used, and two different ways for simulating solvent cavity formation. The results for each of the cases were analised, and each methodology proposed is indicated for particular case.
Resumo:
A model based on chemical structure was developed for the accurate prediction of octanol/water partition coefficient (K OW) of polychlorinated biphenyls (PCBs), which are molecules of environmental interest. Partial least squares (PLS) was used to build the regression model. Topological indices were used as molecular descriptors. Variable selection was performed by Hierarchical Cluster Analysis (HCA). In the modeling process, the experimental K OW measured for 30 PCBs by thin-layer chromatography - retention time (TLC-RT) has been used. The developed model (Q² = 0,990 and r² = 0,994) was used to estimate the log K OW values for the 179 PCB congeners whose K OW data have not yet been measured by TLC-RT method. The results showed that topological indices can be very useful to predict the K OW.