949 resultados para p-type conductivity
Resumo:
We report a first principles study of the electronic properties for a contact formed between Nb-doped monolayer MoS2 and gold for different doping concentrations. We first focus on the shift of energy levels in band structure and the density of states with respect to the Fermi level for a geometrically optimized 5 x 5 MoS2 supercell for both pristine and Nb-doped structures. The doping is achieved by substituting Mo atoms with Nb atoms at random positions. It is observed that for an experimentally reported sheet hole doping concentration of (rho(2D)) 1.8 x 10(14) cm(-2), the pristine MoS2 converts to degenerate p-type semiconductor. Next, we interface this supercell with six layers of < 111 > cleaved surface of gold to investigate the contact nature of MoS2-Au system. By careful examination of projected band structure, projected density of states, effective potential and charge density difference, we demonstrate that the Schottky barrier nature observed for pure MoS2-Au contact can be converted from n-type to p-type by efficient Nb doping.
Resumo:
High sensitivity gas sensors are typically realized using metal catalysts and nanostructured materials, utilizing non-conventional synthesis and processing techniques, incompatible with on-chip integration of sensor arrays. In this work, we report a new device architecture, suspended core-shell Pt-PtOx nanostructure that is fully CMOS-compatible. The device consists of a metal gate core, embedded within a partially suspended semiconductor shell with source and drain contacts in the anchored region. The reduced work function in suspended region, coupled with builtin electric field of metal-semiconductor junction, enables the modulation of drain current, due to room temperature Redox reactions on exposure to gas. The device architecture is validated using Pt-PtO2 suspended nanostructure for sensing H-2 down to 200 ppb under room temperature. By exploiting catalytic activity of PtO2, in conjunction with its p-type semiconducting behavior, we demonstrate about two orders of magnitude improvement in sensitivity and limit of detection, compared to the sensors reported in recent literature. Pt thin film, deposited on SiO2, is lithographically patterned and converted into suspended Pt-PtO2 sensor, in a single step isotropic SiO2 etching. An optimum design space for the sensor is elucidated with the initial Pt film thickness ranging between 10 nm and 30 nm, for low power (< 5 mu W), room temperature operation. (C) 2015 AIP Publishing LLC.
Resumo:
Titanium dioxide thin films were deposited by RF reactive magnetron sputtering technique on p-type silicon(100) substrates held at temperatures in the range 303-673 K. The influence of substrate temperature on the core level binding energies, chemical bonding configuration, crystallographic structure and dielectric properties was investigated. X-ray photoelectron spectroscopy studies and Fourier transform infrared transmittance data confirmed the formation of stoichiometric films with anatase phase at a substrate temperature of 673 K. The films formed at 303 K were nanocrystalline with amorphous matrix while those deposited at 673 K were transformed in to crystalline phase and growth of grains in pyramidal like structure as confirmed by X-ray diffraction and atomic force microscopy respectively. Metal-oxide-semiconductor capacitors were fabricated with the configuration of Al/TiO2/Si structures. The current voltage, capacitance voltage and conductance voltage characteristics were studied to understand the electrical conduction and dielectric properties of the MOS devices. The leakage current density (at gate voltage of 2 V) decreased from 2.2 x 10(-6) to 1.7 x 10(-7) A/cm(2), the interface trap density decreased from 1.2 x 10(13) to 2.1 x 10(12) cm(-2) eV(-1) and the dielectric constant increased from 14 to 36 with increase of substrate temperature from 303 to 673 K.
Resumo:
The effect of inserting ultra-thin atomic layer deposited Al2O3 dielectric layers (1 nm and 2 nm thick) on the Schottky barrier behaviour for high (Pt) and low(Al) work function metals on n- and p-doped InGaAs substrates has been investigated. Rectifying behaviour was observed for the p-type substrates (both native oxide and sulphur passivated) for both the Al/p-InGaAs and Al/Al2O3/p-InGaAs contacts. The Pt contacts directly deposited on p-InGaAs displayed evidence of limited rectification which increased with Al2O3 interlayer thickness. Ohmic contacts were formed for both metals on n-InGaAs in the absence of an Al2O3 interlayer, regardless of surface passivation. However, limited rectifying behaviour was observed for both metals on the 2 nm Al2O3/n-InGaAs samples for the sulphur passivated InGaAs surface, indicating the importance of both surface passivation and the presence of an ultra-thin dielectric interlayer on the current-voltage characteristics displayed by these devices. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Silver indium sulfide (AgInS2) thin films are deposited by sequential sputtering of metallic precursor Ag/In] followed by sulfurization. Effect of substrate temperature (Tsub) during sulfurization process on the film growth is studied by varying the substrate temperature from 350 to 500 degrees C. Films prepared above 350 degrees C showed a mixture of orthorhombic and tetragonal phases of AgInS2 with tetragonal phase being dominant. Better crystalline, nearly stoichiometric and p-type films are obtained at a substrate temperature of 500 degrees C. The characteristic A(1) mode of AgInS2 chalcopyrite structure is observed in the Raman spectra at 274 cm(-1) for the films prepared above 350 degrees C. The grain size of the film increases from 489 to 895 nm with the increase in substrate temperature. The binding energies of the constituent elements are determined using XPS. The band gap of AgInS2 films is in the range of 1.64-1.92 eV and the absorption coefficient is found to be >10(4) cm(-1). Preliminary studies on the AgInS2/ZnS solar cell showed an efficiency of 0.3%. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Tetrahedrites are natural earth-abundant minerals consisting of environmentally-friendly elements of copper and sulphur. Recently, research has been focused on the natural and synthetic minerals of tetrahedrite materials for thermoelectric applications. The thermoelectric figure of merit zT of around unity at similar to 723 K for many doped and natural tetrahedrite materials in the past 2-3 years was determined and this value is comparable to conventional p-type TE materials. In this review, a brief history of tetrahedrite materials is followed by information about its crystal structure and chemical bonding, electronic band structure and transport properties. Different synthesis approaches have been summarized. Also, this review outlines the effect of different doping elements on the thermoelectric properties of tetrahedrite materials, and the natural mineral tetrahedrite that can be used as thermoelectric materials.
Resumo:
High-k TiO2 thin film on p-type silicon substrate was fabricated by a combined sol-gel and spin coating method. Thus deposited titania film had anatase phase with a small grain size of 16 nm and surface roughness of congruent to 0.6 nm. The oxide capacitance (C-ox), flat band capacitance (C-FB), flat band voltage (V-FB), oxide trapped charge (Q(ot)), calculated from the high frequency (1 MHz) C-V curve were 0.47 nF, 0.16 nF, -0.91 V, 4.7x10(-12) C, respectively. As compared to the previous reports, a high dielectric constant of 94 at 1 MHz frequency was observed in the devices investigated here and an equivalent oxide thickness (EOT) was 4.1 nm. Dispersion in accumulation capacitance shows a linear relationship with AC frequencies. Leakage current density was found in acceptable limits (2.1e-5 A/cm(2) for -1 V and 5.7e-7 A/cm(2) for +1 V) for CMOS applications.
Resumo:
High-k TiO2 thin film on p-type silicon substrate was fabricated by a combined sol-gel and spin coating method. Thus deposited titania film had anatase phase with a small grain size of 16 nm and surface roughness of congruent to 0.6 nm. The oxide capacitance (C-ox), flat band capacitance (C-FB), flat band voltage (V-FB), oxide trapped charge (Q(ot)), calculated from the high frequency (1 MHz) C-V curve were 0.47 nF, 0.16 nF, -0.91 V, 4.7x10(-12) C, respectively. As compared to the previous reports, a high dielectric constant of 94 at 1 MHz frequency was observed in the devices investigated here and an equivalent oxide thickness (EOT) was 4.1 nm. Dispersion in accumulation capacitance shows a linear relationship with AC frequencies. Leakage current density was found in acceptable limits (2.1e-5 A/cm(2) for -1 V and 5.7e-7 A/cm(2) for +1 V) for CMOS applications.
Resumo:
Topological crystalline insulators (TCIs) are a new quantum state of matter in which linearly dispersed metallic surface states are protected by crystal mirror symmetry. Owing to its vanishingly small bulk band gap, a TCI like Pb0.6Sn0.4Te has poor thermoelectric properties. Breaking of crystal symmetry can widen the band gap of TCI. While breaking of mirror symmetry in a TCI has been mostly explored by various physical perturbation techniques, chemical doping, which may also alter the electronic structure of TCI by perturbing the local mirror symmetry, has not yet been explored. Herein, we demonstrate that Na doping in Pb0.6Sn0.4Te locally breaks the crystal symmetry and opens up a bulk electronic band gap, which is confirmed by direct electronic absorption spectroscopy and electronic structure calculations. Na doping in Pb0.6Sn0.4Te increases p-type carrier concentration and suppresses the bipolar conduction (by widening the band gap), which collectively gives rise to a promising zT of 1 at 856 K for Pb0.58Sn0.40Na0.02Te. Breaking of crystal symmetry by chemical doping widens the bulk band gap in TCI, which uncovers a route to improve TCI for thermoelectric applications.
Development of an automated ultrasonic spray pyrolysis system and the growth of Cu2ZnSnS4 thin films
Resumo:
An automated ultrasonic spray pyrolysis system is fabricated for the growth of thin films. The system is equipped with x-y movement and enables film deposition in different patterns and spray rates. Cu-2(Zn,Sn)S-4 (CZTS) films are deposited using this setup. The substrate temperature (T-s) is varied from 240 to 490 degrees C. Kesterite CZTS phase is observed in all the films together with binary phases. The films prepared at T-s <340 degrees C showed SnxSy phase and those at T-s >340 degrees C showed Cu2S phase. Sulfur incorporation is maximum (40%) at 440 degrees C and the films showed better morphology. The Cu and S concentrations are varied to remove binary phases. Depth wise elemental analysis confirmed the existence of single phase CZTS. p-Type CZTS films of resistivity in the range of 10(2)-10(3) Omega cm are obtained. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Micro-arc oxidation (MAO) coatings were prepared on AZ31B magnesium alloy using alkaline silicate electrolyte at different current densities (0.026, 0.046 and 0.067 A/cm(2)). Field Emission Scanning Electron Microscopy (FESEM) analysis of the coating revealed an irregular porous structure with cracked morphology. Compositional analysis carried out for MAO coating showed the presence of almost an equal amount of Mg and 0 (34 wt.%) apart from other elements such as F, Si and AI. The cross-sectional FESEM images clearly portrayed that the MAO coating was dense along with the presence of very few fine pores. The surface roughness (R-a) of the coatings increased with an increase in the current density. Potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies were carried out for both the bare and MAO coated AZ31B Mg alloy in 3.5% NaCl solution. The corrosion potential (E-corr) and corrosion current density (i(corr)) values obtained for the bare substrate were -1.49 V and 46 mu A/cm(2), respectively. The coating prepared at 0.046 A/cm(2) exhibited the lowest i(corr) value of 7.79 x 10(-10) A/cm(2) and highest polarization resistance (41.6 M Omega cm(2)) attesting to the better corrosion resistance of the coating compared to other samples. EIS results also indicated almost similar corrosion behavior for the MAO coatings. Mott-Schottky analysis showed n-type and p-type semiconductor behavior for the oxide layer present on the bare magnesium alloy and MAO coatings respectively. (C) 2016 Published by Elsevier B.V.
Resumo:
We discuss the potential application of high dc voltage sensing using thin-film transistors (TFTs) on flexible substrates. High voltage sensing has potential applications for power transmission instrumentation. For this, we consider a gate metal-substrate-semiconductor architecture for TFTs. In this architecture, the flexible substrate not only provides mechanical support but also plays the role of the gate dielectric of the TFT. Hence, the thickness of the substrate needs to be optimized for maximizing transconductance, minimizing mechanical stress, and minimizing gate leakage currents. We discuss this optimization, and develop n-type and p-type organic TFTs using polyvinyldene fluoride as the substrate-gate insulator. Circuits are also realized to achieve level shifting, amplification, and high drain voltage operation.
Resumo:
Investigation of a transition metal dichalcogenide (TMD)-metal interface is essential for the effective functioning of monolayer TMD based field effect transistors. In this work, we employ the Density Functional Theory calculations to analyze the modulation of the electronic structure of monolayer WS2 with chlorine doping and the relative changes in the contact properties when interfaced with gold and palladium. We initially examine the atomic and electronic structures of pure and doped monolayer WS2 supercell and explore the formation of midgap states with band splitting near the conduction band edge. Further, we analyze the contact nature of the pure supercell with Au and Pd. We find that while Au is physiosorbed and forms n-type contact, Pd is chemisorped and forms p-type contact with a higher valence electron density. Next, we study the interface formed between the Cl-doped supercell and metals and observe a reduction in the Schottky barrier height (SBH) in comparison to the pure supercell. This reduction found is higher for Pd in comparison to Au, which is further validated by examining the charge transfer occurring at the interface. Our study confirms that Cl doping is an efficient mechanism to reduce the n-SBH for both Au and Pd, which form different types of contact with WS2. (C) 2016 AIP Publishing LLC.
Resumo:
Ferromagnetic semiconductor MnxGa1-xSb single crystals were fabricated by Mn-ions implantation, deposition, and the post annealing. Magnetic hysteresis-loops in the MnxGa1-xSb single crystals were obtained at room temperature (300 K). The structure of the ferromagnetic semiconductor MnxGa1-xSb single crystal was analyzed by Xray diffraction. The distribution of carrier concentrations in MnxGa1-xSb was investigated by electrochemical capacitance- voltage profiler. The content of Mn in MnxGa1-xSb varied gradually from x = 0.09 near the surface to x = 0 in the wafer inner analyzed by X-ray diffraction. Electrochemical capacitance-voltage profiler reveals that the concentration of p-type carriers in MnxGa1-xSb is as high as 1 1021 cm-3, indicating that most of the Mn atoms in MnxGa1-xSb take the site of Ga, and play a role of acceptors.
Resumo:
Static and dynamic behavior of the epitaxially grown dual gate trench 4H-SiC junction field effect transistor (JFET) is investigated. Typical on-state resistance Ron was 6-10mΩcm2 at VGS = 2.5V and the breakdown voltage between the range of 1.5-1.8kV was realized at VGS = -5V for normally-off like JFETs. It was found that the turn-on energy delivers the biggest part of the switching losses. The dependence of switching losses from gate resistor is nearly linear, suggesting that changing the gate resistor, a way similar to Si-IGBT technology, can easily control di/dt and dv/dt. Turn-on losses at 200°C are lower compared to those at 25°C, which indicates the influence of the high internal p-type gate layer resistance. Inductive switching numerical analysis suggested the strong influence of channel doping conditions on the turn-on switching performance. The fast switching normally-off JFET devices require heavily doped narrow JFET channel design. © (2009) Trans Tech Publications, Switzerland.