446 resultados para oyster
Resumo:
Royal Society of London. Philosophical transactions, 1827, pp. 39-48.
Resumo:
At head of title: Commission of Conservation, Canada. Committee on Fisheries, Game and Fur-bearing Animals.
Resumo:
Vol. 1 by Everett S. Stackpole and Lucien Thompson: v. 2 by Everett S. Stackpole and Winthrop S. Meserve.
Resumo:
The world's largest fossil oyster reef, formed by the giant oyster Crassostrea gryphoides and located in Stetten (north of Vienna, Austria) is studied by Harzhauser et al., 2015, 2016; Djuricic et al., 2016. Digital documentation of the unique geological site is provided by terrestrial laser scanning (TLS) at the millimeter scale. Obtaining meaningful results is not merely a matter of data acquisition with a suitable device; it requires proper planning, data management, and postprocessing. Terrestrial laser scanning technology has a high potential for providing precise 3D mapping that serves as the basis for automatic object detection in different scenarios; however, it faces challenges in the presence of large amounts of data and the irregular geometry of an oyster reef. We provide a detailed description of the techniques and strategy used for data collection and processing in Djuricic et al., 2016. The use of laser scanning provided the ability to measure surface points of 46,840 (estimated) shells. They are up to 60-cm-long oyster specimens, and their surfaces are modeled with a high accuracy of 1 mm. In addition to laser scanning measurements, more than 300 photographs were captured, and an orthophoto mosaic was generated with a ground sampling distance (GSD) of 0.5 mm. This high-resolution 3D information and the photographic texture serve as the basis for ongoing and future geological and paleontological analyses. Moreover, they provide unprecedented documentation for conservation issues at a unique natural heritage site.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The present study describes the biofouling composition of the surface of the mangrove oyster Crassostrea rhizophorae (Guilding, 1828), cultivated in an Amazon estuary, located in the state of Pará, northern Brazil. In total, 6.124 macroinvertebrates were sampled in the months of July, August, October and December 2013. Collected epifauna was presented by five taxa (Bivalvia, Gastropoda, Polychaeta, Crustacea and Anthozoa), 20 families and 37 species. Bivalvia was the most abundant class, presenting 5.183 mussels Mytella charruana (d'Orbigny, 1842). Knowledge of biofouling composition associated to the surface cultured bivalves enables the implementation of mitigation measures to the impacts caused by this association.
Resumo:
Ocean acidification, due to anthropogenic CO2 absorption by the ocean, may have profound impacts on marine biota. Calcareous organisms are expected to be particularly sensitive due to the decreasing availability of carbonate ions driven by decreasing pH levels. Recently, some studies focused on the early life stages of mollusks that are supposedly more sensitive to environmental disturbances than adult stages. Although these studies have shown decreased growth rates and increased proportions of abnormal development under low pH conditions, they did not allow attribution to pH induced changes in physiology or changes due to a decrease in aragonite saturation state. This study aims to assess the impact of several carbonate-system perturbations on the growth of Pacific oyster (Crassostrea gigas) larvae during the first 3 days of development (until shelled D-veliger larvae). Seawater with five different chemistries was obtained by separately manipulating pH, total alkalinity and aragonite saturation state (calcium addition). Results showed that the developmental success and growth rates were not directly affected by changes in pH or aragonite saturation state but were highly correlated with the availability of carbonate ions. In contrast to previous studies, both developmental success into viable D-shaped larvae and growth rates were not significantly altered as long as carbonate ion concentrations were above aragonite saturation levels, but they strongly decreased below saturation levels. These results suggest that the mechanisms used by these organisms to regulate calcification rates are not efficient enough to compensate for the low availability of carbonate ions under corrosive conditions.
Resumo:
The malacocultura, particularly oyster farming, appears on the world stage as one of the most viable alternatives to fishing decline and supply of fresh product. In Brazil, the development of mollusc cultivationis through the genus oyster cultivation Crassostrea, among them Crassostrea rhizophorae (Guilding, 1828), known for oyster-the-swamp, one of the main species of farmed bivalves in the state of Pará. This so it aimed to characterize the biomorphometrics relations, estimate the Shape Stabilization Index (IEF) of the shell and the yield of edible meat C. rhizophorae grown in an Amazonian coast, state of Pará, northern Brazil. When all is sampled 1,028 individuals, in April 2016, measuring the external morphometric measures (length, width and height) and total and visceral biomass. The results obtained are C. rhizophorae with (1) excellent biomorphometrics relationships among both external measures, the measures of the shell and biomass generating equations that satisfy morphometric pet species, (2) yield of edible meat 15% of the total biomass and variation in the shell along its development to adulthood, with a tendency to stabilize the reach 60mm in length.
Resumo:
This study explores the giant oyster Hyotissa hyotis as a novel environmental archive in tropical reef environments of the Indo-Pacific. The species is a typical accessory component in coral reefs, can reach sizes of tens of centimetres, and dates back to the Late Pleistocene. Here, a 70.2-mm-long oxygen and carbon isotope transect through the shell of a specimen collected at Safaga Bay, northern Red Sea, in May 1996, is presented. The transect runs perpendicularly to the foliate and vesicular layers of the inner ostracum near the ligament area of the oyster. The measured d18O and d13C records show sinusoidal fluctuations, which are independent of shell microstructure. The d13C fluctuations exhibit the same wavelength as the d18O fluctuations but are phase shifted. The d18O record reflects the sea surface temperature variations from 1957 until 1996, possibly additionally influenced by the local evaporation. Due to locally enhanced evaporation in the semi-enclosed Safaga Bay, the d18Oseawater value is estimated at 2.17 per mil, i.e., 0.3-0.8 per mil higher than published open surface water d18O values (1.36-1.85 per mil) from the region. The mean water temperature deviates by only 0.4°C from the expected value, and the minimum and maximum values are 0.5°C lower and 2.9°C higher, respectively. When comparing the mean monthly values, however, the sea surface temperature discrepancy between reconstructed and global grid datasets is always <1.0°C. The d13C signal is weakly negatively correlated with regional chlorophyll a concentration and with the sunshine duration, which may reflect changes in the bivalve's respiration. The study emphasises the palaeogeographic context in isotope studies based on fossils, because coastal embayments might not reflect open-water oceanographic conditions.
Resumo:
An increasing number of studies are now reporting the effects of ocean acidification on a broad range of marine species, processes and systems. Many of these are investigating the sensitive early life-history stages that several major reviews have highlighted as being potentially most susceptible to ocean acidification. Nonetheless there remain few investigations of the effects of ocean acidification on the very earliest, and critical, process of fertilization, and still fewer that have investigated levels of ocean acidification relevant for the coming century. Here we report the effects of near-future levels of ocean acidification (?0.35 pH unit change) on sperm swimming speed, sperm motility, and fertilization kinetics in a population of the Pacific oyster Crassostrea gigas from western Sweden. We found no significant effect of ocean acidification - a result that was well-supported by power analysis. Similar findings from Japan suggest that this may be a globally robust result, and we emphasise the need for experiments on multiple populations from throughout a species' range. We also discuss the importance of sound experimental design and power analysis in meaningful interpretation of non-significant results.
Resumo:
Anthropogenic carbon dioxide (CO2) emissions reduce pH of marine waters due to the absorption of atmospheric CO2 and formation of carbonic acid. Estuarine waters are more susceptible to acidification because they are subject to multiple acid sources and are less buffered than marine waters. Consequently, estuarine shell forming species may experience acidification sooner than marine species although the tolerance of estuarine calcifiers to pH changes is poorly understood. We analyzed 23 years of Chesapeake Bay water quality monitoring data and found that daytime average pH significantly decreased across polyhaline waters although pH has not significantly changed across mesohaline waters. In some tributaries that once supported large oyster populations, pH is increasing. Current average conditions within some tributaries however correspond to values that we found in laboratory studies to reduce oyster biocalcification rates or resulted in net shell dissolution. Calcification rates of juvenile eastern oysters, Crassostrea virginica, were measured in laboratory studies in a three-way factorial design with 3 pH levels, two salinities, and two temperatures. Biocalcification declined significantly with a reduction of ~0.5 pH units and higher temperature and salinity mitigated the decrease in biocalcification.
Resumo:
The protozoan parasite Marteilia refringens has been partly responsible for the severe decrease in the production of the European flat oyster Ostrea edulis Linnaeus in France since the 1970s. The calanoid copepod Paracartia grani Sars was recently found to be a host for M refringens in French shallow-water oyster ponds ('claires'). This study reconsidered M refringens transmission dynamics in the light of this finding, taking into account not only oyster infection dynamics and environmental factors but also data concerning the copepod host. P. grani population dynamics in the claire under study revealed that this species is the dominant planktonic copepod in this confined ecosystem. During winter, M refringens overwintered in O. edulis, with P. grani existing only as resting eggs in the sediment. The increase in temperature in spring controlled and synchronized both the release of M refringens sporangia in the oyster feces, and the hatching of the benthic resting eggs of the copepod. Infection of oysters by M refringens was limited to June, July and August, coinciding with (1) the highest temperature recorded in the claire, and (2) the highest abundance of P. grani. PCR detection of M refringens in P. grani during the summer period was linked to the release of parasite sporangia by the oyster. Our results are supported by previous results on the effective transmission of this parasite from the oyster to the copepod.
Resumo:
Among bivalve species, the Pacific oyster, Crassostrea gigas, is the most economically important bivalve production over the world. Today, C. gigas is subject to an important production effort that leads to an intensive artificial selection. Larval stage is relatively unknown, specifically in a domestication context. Genetic consequence of artificial selection is still at a preliminary study. We aimed to tackle the consequence of inconscient domestication on the variance reproductive success focusing on larval stage, keystone of the life cycle. We studied two kinds of specific selective processes that common hatchery rearing practices exert : the effect of discarding the smallest larvae on genetic diversity and the artificial environment rearing effect via the temperature providing a contrast resembling wild versus hatchery conditions (20 and 26°C). In order to monitor the effect of the selection of fast growing larvae by sieving, growth variability and genetic diversity in a larval population descended from a factorial breeding was studied. We used a mixed-family approach to reduce potentially confounding environmental biais. The retrospective assignment of individuals to family groups has been performed using a three microsatellite markers set. Two different rearing were carried out in parallel. For three (replicates) 50-l tanks, the smallest larvae were progressively discarded by selective sieving, whereas for the three others no selective sieving was performed. The intensity of selective sieving was adjusted so as to discard 50% of the larvae over the whole rearing period in a progressive manner. As soon as the larvae reached the pediveliger stage, ready to settle larvae were sampled for genetic analysis. Regarding the artificial environment rearing effect via the temperature, we used a similar mixed-family approach. The progeny from a factorial breeding design was divided as follows: three (replicates) 50-l tanks were dedicaced to a rearing at 26°C versus 20°C for three others 50-l tanks. The whole size variability was preserved for this experiment. Individual growth measurements for larvae genetically identified have been performed at days 22 and 30 after fertilization for both conditions. In a same way, we collected individual measurements for genotyped juvenile oysters (80 days after fertilization). At a phenotypic scale, relative survival and settlement success for larvae with sieving were higher. Sieving appears as a time-saving process associated with a better relative survival ratio. But in the same time, our results confirm that a significant genetic variability exist for early developmental traits in the Pacific oyster. This is congruent with the results already obtained that investigated genetic variability and genetic correlations in early life-history traits of Crassostrea gigas. Discarding around 50% of the smallest larvae can lead to significant selection at the larval stage.