774 resultados para outlier detection, data mining, gpgpu, gpu computing, supercomputing
Resumo:
En esta memoria se presenta el diseño y desarrollo de una aplicación en la nube destinada a la compartición de objetos y servicios. El desarrollo de esta aplicación surge dentro del proyecto de I+D+i, SITAC: Social Internet of Things – Apps by and for the Crowd ITEA 2 11020, que trata de crear una arquitectura integradora y un “ecosistema” que incluya plataformas, herramientas y metodologías para facilitar la conexión y cooperación de entidades de distinto tipo conectadas a la red bien sean sistemas, máquinas, dispositivos o personas con dispositivos móviles personales como tabletas o teléfonos móviles. El proyecto innovará mediante la utilización de un modelo inspirado en las redes sociales para facilitar y unificar las interacciones tanto entre personas como entre personas y dispositivos. En este contexto surge la necesidad de desarrollar una aplicación destinada a la compartición de recursos en la nube que pueden ser tanto lógicos como físicos, y que esté orientada al big data. Ésta será la aplicación presentada en este trabajo, el “Resource Sharing Center”, que ofrece un servicio web para el intercambio y compartición de contenido, y un motor de recomendaciones basado en las preferencias de los usuarios. Con este objetivo, se han usado tecnologías de despliegue en la nube, como Elastic Beanstalk (el PaaS de Amazon Web Services), S3 (el sistema de almacenamiento de Amazon Web Services), SimpleDB (base de datos NoSQL) y HTML5 con JavaScript y Twitter Bootstrap para el desarrollo del front-end, siendo Python y Node.js las tecnologías usadas en el back end, y habiendo contribuido a la mejora de herramientas de clustering sobre big data. Por último, y de cara a realizar el estudio sobre las pruebas de carga de la aplicación se ha usado la herramienta ApacheJMeter.
Resumo:
Nowadays, data mining is based on low-level specications of the employed techniques typically bounded to a specic analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Here, we propose a model-driven approach based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (via data-warehousing technology) and the analysis models for data mining (tailored to a specic platform). Thus, analysts can concentrate on the analysis problem via conceptual data-mining models instead of low-level programming tasks related to the underlying-platform technical details. These tasks are now entrusted to the model-transformations scaffolding.
Resumo:
Data mining is one of the most important analysis techniques to automatically extract knowledge from large amount of data. Nowadays, data mining is based on low-level specifications of the employed techniques typically bounded to a specific analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Bearing in mind this situation, we propose a model-driven approach which is based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (that is deployed via data-warehousing technology) and the analysis models for data mining (tailored to a specific platform). Thus, analysts can concentrate on understanding the analysis problem via conceptual data-mining models instead of wasting efforts on low-level programming tasks related to the underlying-platform technical details. These time consuming tasks are now entrusted to the model-transformations scaffolding. The feasibility of our approach is shown by means of a hypothetical data-mining scenario where a time series analysis is required.
Resumo:
Comunicación presentada en las XVI Jornadas de Ingeniería del Software y Bases de Datos, JISBD 2011, A Coruña, 5-7 septiembre 2011.
Resumo:
Em época de crise financeira, as ferramentas open source de data mining representam uma nova tendência na investigação, educação e nas aplicações industriais, especialmente para as pequenas e médias empresas. Com o software open source, estas podem facilmente iniciar um projeto de data mining usando as tecnologias mais recentes, sem se preocuparem com os custos de aquisição das mesmas, podendo apostar na aprendizagem dos seus colaboradores. Os sistemas open source proporcionam o acesso ao código, facilitando aos colaboradores a compreensão dos sistemas e algoritmos e permitindo que estes o adaptem às necessidades dos seus projetos. No entanto, existem algumas questões inerentes ao uso deste tipo de ferramenta. Uma das mais importantes é a diversidade, e descobrir, tardiamente, que a ferramenta escolhida é inapropriada para os objetivos do nosso negócio pode ser um problema grave. Como o número de ferramentas de data mining continua a crescer, a escolha sobre aquela que é realmente mais apropriada ao nosso negócio torna-se cada vez mais difícil. O presente estudo aborda um conjunto de ferramentas de data mining, de acordo com as suas características e funcionalidades. As ferramentas abordadas provém da listagem do KDnuggets referente a Software Suites de Data Mining. Posteriormente, são identificadas as que reúnem melhores condições de trabalho, que por sua vez são as mais populares nas comunidades, e é feito um teste prático com datasets reais. Os testes pretendem identificar como reagem as ferramentas a cenários diferentes do tipo: performance no processamento de grandes volumes de dados; precisão de resultados; etc. Nos tempos que correm, as ferramentas de data mining open source representam uma oportunidade para os seus utilizadores, principalmente para as pequenas e médias empresas, deste modo, os resultados deste estudo pretendem ajudar no processo de tomada de decisão relativamente às mesmas.
Resumo:
This paper proposes a novel application of fuzzy logic to web data mining for two basic problems of a website: popularity and satisfaction. Popularity means that people will visit the website while satisfaction refers to the usefulness of the site. We will illustrate that the popularity of a website is a fuzzy logic problem. It is an important characteristic of a website in order to survive in Internet commerce. The satisfaction of a website is also a fuzzy logic problem that represents the degree of success in the application of information technology to the business. We propose a framework of fuzzy logic for the representation of these two problems based on web data mining techniques to fuzzify the attributes of a website.
Resumo:
Electricity market price forecast is a changeling yet very important task for electricity market managers and participants. Due to the complexity and uncertainties in the power grid, electricity prices are highly volatile and normally carry with spikes. which may be (ens or even hundreds of times higher than the normal price. Such electricity spikes are very difficult to be predicted. So far. most of the research on electricity price forecast is based on the normal range electricity prices. This paper proposes a data mining based electricity price forecast framework, which can predict the normal price as well as the price spikes. The normal price can be, predicted by a previously proposed wavelet and neural network based forecast model, while the spikes are forecasted based on a data mining approach. This paper focuses on the spike prediction and explores the reasons for price spikes based on the measurement of a proposed composite supply-demand balance index (SDI) and relative demand index (RDI). These indices are able to reflect the relationship among electricity demand, electricity supply and electricity reserve capacity. The proposed model is based on a mining database including market clearing price, trading hour. electricity), demand, electricity supply and reserve. Bayesian classification and similarity searching techniques are used to mine the database to find out the internal relationships between electricity price spikes and these proposed. The mining results are used to form the price spike forecast model. This proposed model is able to generate forecasted price spike, level of spike and associated forecast confidence level. The model is tested with the Queensland electricity market data with promising results. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved.
Resumo:
Fuzzy data has grown to be an important factor in data mining. Whenever uncertainty exists, simulation can be used as a model. Simulation is very flexible, although it can involve significant levels of computation. This article discusses fuzzy decision-making using the grey related analysis method. Fuzzy models are expected to better reflect decision-making uncertainty, at some cost in accuracy relative to crisp models. Monte Carlo simulation is used to incorporate experimental levels of uncertainty into the data and to measure the impact of fuzzy decision tree models using categorical data. Results are compared with decision tree models based on crisp continuous data.
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. Most existing systems concentrate either on mining algorithms or on visualization techniques. Though visual methods developed in information visualization have been helpful, for improved understanding of a complex large high-dimensional dataset, there is a need for an effective projection of such a dataset onto a lower-dimension (2D or 3D) manifold. This paper introduces a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualization domain. The framework follows Shneiderman’s mantra to provide an effective user interface. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection methods, such as Generative Topographic Mapping (GTM) and Hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, billboarding, and user interaction facilities, to provide an integrated visual data mining framework. Results on a real life high-dimensional dataset from the chemoinformatics domain are also reported and discussed. Projection results of GTM are analytically compared with the projection results from other traditional projection methods, and it is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework.
Resumo:
We introduce a flexible visual data mining framework which combines advanced projection algorithms from the machine learning domain and visual techniques developed in the information visualization domain. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection algorithms, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates and billboarding, to provide a visual data mining framework. Results on a real-life chemoinformatics dataset using GTM are promising and have been analytically compared with the results from the traditional projection methods. It is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework. Copyright 2006 ACM.
Resumo:
The purpose of this paper is to explain the notion of clustering and a concrete clustering method- agglomerative hierarchical clustering algorithm. It shows how a data mining method like clustering can be applied to the analysis of stocks, traded on the Bulgarian Stock Exchange in order to identify similar temporal behavior of the traded stocks. This problem is solved with the aid of a data mining tool that is called XLMiner™ for Microsoft Excel Office.