957 resultados para organizational features
Resumo:
Healthcare organizations in all OECD countries have continued to undergo change. These changes have been found to have a negative effect on work engagement of nursing staff. While the extent to which nursing staff dealt with these changes has been documented in the literature, little is known of how they utilized their personal resources to deal with the consequences of these changes. This study will address this gap by integrating the Job Demands-Resources theoretical perspective with Positive Psychology, in particular, psychological capital (PsyCap). PsyCap is operationalized as a source of personal resources. Data were collected from 401 nurses from Australia and analyses were undertaken using Partial Least Squares modelling and moderation analysis. Two types of changes on the nursing work were identified. There was an increase in changes to the work environment of nursing. These changes, included increasing administrative workload and the amount of work, resulted in more job demands and job resources. On the other hand, another type of changes relate to reduction to training and management support, which resulted in less job demands. Nurses with more job demands utilized more job resources to address these increasing demands. We found PsyCap to be a crucial source of personal resources that has a moderating effect on the negative effects of job demands and role stress. PsyCap and job resources were both critical in enhancing the work engagement of nurses, as they encountered changes to nursing work. These findings provided empirical support for a positive psychological perspective of understanding nursing engagement.
Resumo:
This paper is about localising across extreme lighting and weather conditions. We depart from the traditional point-feature-based approach as matching under dramatic appearance changes is a brittle and hard thing. Point feature detectors are fixed and rigid procedures which pass over an image examining small, low-level structure such as corners or blobs. They apply the same criteria applied all images of all places. This paper takes a contrary view and asks what is possible if instead we learn a bespoke detector for every place. Our localisation task then turns into curating a large bank of spatially indexed detectors and we show that this yields vastly superior performance in terms of robustness in exchange for a reduced but tolerable metric precision. We present an unsupervised system that produces broad-region detectors for distinctive visual elements, called scene signatures, which can be associated across almost all appearance changes. We show, using 21km of data collected over a period of 3 months, that our system is capable of producing metric localisation estimates from night-to-day or summer-to-winter conditions.
Resumo:
This PhD research has provided novel solutions to three major challenges which have prevented the wide spread deployment of speaker recognition technology: (1) combating enrolment/ verification mismatch, (2) reducing the large amount of development and training data that is required and (3) reducing the duration of speech required to verify a speaker. A range of applications of speaker recognition technology from forensics in criminal investigations to secure access in banking will benefit from the research outcomes.
Resumo:
The strain data acquired from structural health monitoring (SHM) systems play an important role in the state monitoring and damage identification of bridges. Due to the environmental complexity of civil structures, a better understanding of the actual strain data will help filling the gap between theoretical/laboratorial results and practical application. In the study, the multi-scale features of strain response are first revealed after abundant investigations on the actual data from two typical long-span bridges. Results show that, strain types at the three typical temporal scales of 10^5, 10^2 and 10^0 sec are caused by temperature change, trains and heavy trucks, and have their respective cut-off frequency in the order of 10^-2, 10^-1 and 10^0 Hz. Multi-resolution analysis and wavelet shrinkage are applied for separating and extracting these strain types. During the above process, two methods for determining thresholds are introduced. The excellent ability of wavelet transform on simultaneously time-frequency analysis leads to an effective information extraction. After extraction, the strain data will be compressed at an attractive ratio. This research may contribute to a further understanding of actual strain data of long-span bridges; also, the proposed extracting methodology is applicable on actual SHM systems.
Resumo:
Abnormal event detection has attracted a lot of attention in the computer vision research community during recent years due to the increased focus on automated surveillance systems to improve security in public places. Due to the scarcity of training data and the definition of an abnormality being dependent on context, abnormal event detection is generally formulated as a data-driven approach where activities are modeled in an unsupervised fashion during the training phase. In this work, we use a Gaussian mixture model (GMM) to cluster the activities during the training phase, and propose a Gaussian mixture model based Markov random field (GMM-MRF) to estimate the likelihood scores of new videos in the testing phase. Further-more, we propose two new features: optical acceleration, and the histogram of optical flow gradients; to detect the presence of any abnormal objects and speed violations in the scene. We show that our proposed method outperforms other state of the art abnormal event detection algorithms on publicly available UCSD dataset.
Resumo:
Fine-grained leaf classification has concentrated on the use of traditional shape and statistical features to classify ideal images. In this paper we evaluate the effectiveness of traditional hand-crafted features and propose the use of deep convolutional neural network (ConvNet) features. We introduce a range of condition variations to explore the robustness of these features, including: translation, scaling, rotation, shading and occlusion. Evaluations on the Flavia dataset demonstrate that in ideal imaging conditions, combining traditional and ConvNet features yields state-of-theart performance with an average accuracy of 97:3%�0:6% compared to traditional features which obtain an average accuracy of 91:2%�1:6%. Further experiments show that this combined classification approach consistently outperforms the best set of traditional features by an average of 5:7% for all of the evaluated condition variations.
Superstars as drivers of organizational identification : empirical findings from professional soccer
Resumo:
This paper examines the effect of superstars on external stakeholders’ organizational identification through the lens of sport. Drawing on social identity theory and the concept of organizational identification, as well as on role model theories and superstar economics, several hypotheses are developed regarding the influence of soccer stars on their fans’ degree of team identification. Using a proprietary data set that combines archival data on professional German soccer players and clubs with survey data on more than 1,400 soccer fans, this study finds evidence for a positive effect of superstar characteristics and role model perception. Moreover, it is found that players who qualify for the definition of a superstar are more important to fans of established teams than to fans of unsuccessful teams. The player's club tenure, however, seems to have no influence on fans’ team identification. It is further argued that the effect of soccer stars on their fans is comparable to that of executives on external stakeholders, and hence, the results are applied to the business domain. The results of this study contribute to existing research by extending the list of personnel-related determinants of organizational identification.
Resumo:
Early years researchers interested in storytelling have largely focused on the development of children’s language and social skills within constructed story sessions. Less focus has been given to the interactional aspects of storytelling in children’s everyday conversation and how the members themselves, the storytellers and story recipients, manage storytelling. An interactional view, using ethnomethodological and conversation analytic approaches, offers the opportunity to study children’s narratives in terms of ‘members work’. Detailed examination of a video-recorded interaction among a group of children in a preparatory year playground shows how the children managed interactions within conversational storytelling. Analyses highlight the ways in which children worked at gaining a turn and made a story tellable within a round of second stories. Investigating children’s competence-in-action ‘from within’, the findings from this research show how children invoke and accomplish competence through their interactions.
Resumo:
The detection of line-like features in images finds many applications in microanalysis. Actin fibers, microtubules, neurites, pilis, DNA, and other biological structures all come up as tenuous curved lines in microscopy images. A reliable tracing method that preserves the integrity and details of these structures is particularly important for quantitative analyses. We have developed a new image transform called the "Coalescing Shortest Path Image Transform" with very encouraging properties. Our scheme efficiently combines information from an extensive collection of shortest paths in the image to delineate even very weak linear features. © Copyright Microscopy Society of America 2011.
Resumo:
Selection of features that will permit accurate pattern classification is a difficult task. However, if a particular data set is represented by discrete valued features, it becomes possible to determine empirically the contribution that each feature makes to the discrimination between classes. This paper extends the discrimination bound method so that both the maximum and average discrimination expected on unseen test data can be estimated. These estimation techniques are the basis of a backwards elimination algorithm that can be use to rank features in order of their discriminative power. Two problems are used to demonstrate this feature selection process: classification of the Mushroom Database, and a real-world, pregnancy related medical risk prediction task - assessment of risk of perinatal death.
Resumo:
Rural crime has largely been understood through social disorganization theory. The dominance of this perspective has meant that most research into rural crime has tried to resolve perceived strains in communities, rather than analyze how social problems are constituted in rural places. Using Elias and Scotson's (1994) account of established-outsider relations, the paper examines how the organizational capacity of specific social groups is significant in determining the quality of crime-talk and responses to crime in isolated and rural settings. In particular social 'oldness' and notions of what constitutes 'community' are significant in determining what activities and individuals or groups are marked as features of crime-talk in these settings.
Resumo:
This paper addresses two common problems that users of various products and interfaces encounter— over-featured interfaces and product documentation. Over-featured interfaces are seen as a problem as they can confuse and over-complicate everyday interactions. Researchers also often claim that users do not read product documentation, although they are often exhorted to ‘RTFM’(read the field manual).We conducted two sets of studies with users which looked at the issues of both manuals and excess features with common domestic and personal products. The quantitative set was a series of questionnaires administered to 170 people over 7 years. The qualitative set consisted of two 6-month longitudinal studies based on diaries and interviews with a total of 15 participants. We found that manuals are not read by the majority of people, and most do not use all the features of the products that they own and use regularly. Men are more likely to do both than women, and younger people are less likely to use manuals than middle-aged and older ones. More educated people are also less likely to read manuals. Over-featuring and being forced to consult manuals also appears to cause negative emotional experiences. Implications of these findings are discussed.
Resumo:
Ovarian cancer is the most common cause of gynaecological cancer death, with an overall 5-year relative survival of 43%. Impaired physical wellbeing and overall quality of life (QoL) represent major concerns for women during and following ovarian cancer treatment, predict survival and are amenable to change through interventions. Exercise, now considered an important part of overall management of a number of cancers, improves short-term outcomes (e.g., function, fatigue, QoL) during chemotherapy...
Resumo:
Individualization of design is often necessary particularly when designing with people with disabilities. Maker communities, with their flexible Do-It-Yourself (DIY) practices, offer potential to support individualized and cost-effective product design. However, efforts to adapt DIY practices in designing with people with disabilities tend to face difficulties with regard to continuous commitment, infrastructure provision and proper guidance. We carried out interviews with diverse stakeholders in the disability services sector and carried out observations of local makerspaces to understand their current practices and potential for future collaborations. We found that makerspace participants face difficulties in terms of infrastructure provision and proper guidance whereas Disability Service Organizations face difficulties in continuous expertise. We suggest that artful infrastructuring to blend the best of both approaches offers potential to create a sustainable community that can design individualized technologies to support people with disabilities.