963 resultados para orbital currents
Resumo:
OBJECTIVE: To determine whether there are inward currents in interstitial cells (IC) isolated from the guinea-pig detrusor and if so, to characterise them using the patch-clamp technique and pharmacological agents. MATERIALS AND METHODS: Using the whole-cell patch-clamp technique, inward currents were studied in IC enzymatically isolated from the detrusor of the guinea-pig bladder. Currents were evoked by stepping positively from a holding potential of - 80 mV. RESULTS: Outward K+ currents were blocked by Cs+ internal solution to reveal inward currents, which activated at voltages more positive than - 50 mV, peaked at 0 mV, reversed near + 50 mV and were half-maximally activated at - 27 mV. The inward currents showed voltage-dependent inactivation and were half-maximally inactivated at - 36 mV. Fitting the activation and inactivation data with a Boltzmann function revealed a window current between - 40 mV and + 20 mV. The decay of the current evoked at 0 mV could be fitted with a single exponential with a mean time-constant of 88 ms. Replacing external Ca2+ with Ba2+ significantly increased this to 344 ms. The current amplitude was augmented by Ba2+, and by Bay K 8644. Inward currents were significantly reduced by 1 microm nifedipine, across the voltage range, but the blockade was more effective on the current evoked at 0 mV than that evoked by a step to - 20 mV, perhaps indicating voltage-dependence of the action of nifedipine or another component of inward current. Increasing the concentration of the drug to 10 microm caused no further significant reduction either at 0 mV or at -20 mV. However, in the presence of 1 microm nifedipine the latter current was significantly reduced by 100 microm Ni2+. Both currents were significantly reduced in Ca2+-free solution. CONCLUSIONS: IC from the guinea-pig detrusor possess inward currents with typical characteristics of L-type Ca2+ current. They also have a component of inward Ca2+ current, which was resistant to nifedipine, but sensitive to Ni2+. Further work is needed to characterise the latter conductance. PMID: 16686735 [PubMed - indexed for MEDLINE]
Resumo:
PURPOSE: Outward currents were characterized from cells resembling interstitial cells of Cajal (ICCs) isolated from the detrusor of the guinea pig bladder. MATERIALS AND METHODS: ICC-like cells were studied using the whole cell patch clamp technique and K+ filled pipettes. Outward currents were evoked by stepping positively from a holding potential of -80 mV. RESULTS: ICC-like cells were distinguished from smooth muscle cells by the presence of lateral branches and an inability to contract spontaneously or when depolarized. Depolarization elicited large outward currents. Penitrem A, a blocker of large conductance, Ca activated K+ channels, significantly decreased the outward current. Its Ca dependence was demonstrated by significant inhibition with nifedipine and Ca-free solution. When large conductance, Ca activated K+ and Ca currents were blocked with penitrem A and nifedipine, a voltage dependent current was unmasked, which activated positive to -50 mV and displayed voltage dependent inactivation with half-maximal inactivation occurring at -71 mV. It was blocked in concentration dependent fashion by tetraethylammonium but unaffected by 4-aminopyridine, charybdotoxin or apamin, suggesting that small and intermediate conductance, calcium activated potassium channels, and Kv1.2 and Kv1.3 channels are unlikely to be involved. At maximal concentrations of tetraethylammonium a portion of the voltage dependent K+ current remained that was not affected by any of the blockers tested. CONCLUSIONS: ICC-like cells from the detrusor possess calcium activated and voltage dependent K+ currents.
Resumo:
The perforated-patch technique was used to measure membrane currents in smooth muscle cells from sheep urethra. Depolarizing pulses evoked large transient outward currents and several components of sustained current. The transient current and a component of sustained current were blocked by iberiotoxin, penitrem A, and nifedipine but were unaffected by apamin or 4-aminopyridine, suggesting that they were mediated by large-conductance Ca(2+)-activated K(+) (BK) channels. When the BK current was blocked by exposure to penitrem A (100 nM) and Ca(2+)-free bath solution, there remained a voltage-sensitive K(+) current that was moderately sensitive to blockade with tetraethylammonium (TEA; half-maximal effective dose = 3.0 +/- 0.8 mM) but not 4-aminopyridine. Penitrem A (100 nM) increased the spike amplitude and plateau potential in slow waves evoked in single cells, whereas addition of TEA (10 mM) further increased the plateau potential and duration. In conclusion, both Ca(2+)-activated and voltage-dependent K(+) currents were found in urethral myocytes. Both of these currents are capable of contributing to the slow wave in these cells, suggesting that they are likely to influence urethral tone under certain conditions.
Resumo:
1. The patch-clamp technique was used to measure membrane currents in isolated smooth muscle cells dispersed from sheep mesenteric lymphatics. Depolarizing steps positive to -30 mV evoked rapid inward currents followed by noisy outward currents. 2. Nifedipine (1 microM) markedly reduced the outward current, while Bay K 8644 (1 microM) enhanced it. Up to 90% of the outward current was also blocked by iberiotoxin (Kd = 36 nM). 3. Large conductance (304 +/- 15 pS, 7 cells), Ca(2+)- and voltage-sensitive channels were observed during single-channel recordings on inside-out patches using symmetrical 140 mM K+ solutions (at 37 degrees C). The voltage required for half-maximal activation of the channels (V1/2) shifted in the hyperpolarizing direction by 146 mV per 10-fold increase in [Ca2+]i. 4. In whole-cell experiments a voltage-dependent outward current remained when the Ca(2+)-activated current was blocked with penitrem A (100 nM). This current activated at potentials positive to -20 mV and demonstrated the phenomenon of voltage-dependent inactivation (V1/2 = -41 +/- 2 mV, slope factor = 18 +/- 2 mV, 5 cells). 6. Tetraethylammonium (TEA; 30 mM) reduced the voltage-dependent current by 75% (Kd = 3.3 mM, 5 cells) while a maximal concentration of 4-aminopyridine (4-AP; 10 mM) blocked only 40% of the current. TEA alone had as much effect as TEA and 4-AP together, suggesting that there are at least two components to the voltage-sensitive K+ current. 7. These results suggest that lymphatic smooth muscle cells generate a Ca(2+)-activated current, largely mediated by large conductance Ca(2+)-activated K+ channels, and several components of voltage-dependent outward current which resemble 'delayed rectifier' currents in other smooth muscle preparations.
Resumo:
The spectrum of collective excitations of oblate toroidal condensates within the Bogoliubov approximation was studied, and the dynamical stability of ring currents around the torus explored. The transition from spheroidal to toroidal geometry of the trap displaced the energy levels into narrow bands. A simple, but accurate, formula was detailed for the lowest angular acoustic modes of excitation, and the splitting energy when a background current is present.
Resumo:
This paper shows that penetration of the applied electric field into the electrodes of a ferroelectric thin film capacitor produces both an interfacial capacitance and an effective mechanism for electron tunneling. The model predictions are compared with experimental results on Au-BST-SrRuO3 capacitors of varying thicknesses, and the agreement is excellent.
Resumo:
Voltammetry is reported for chlorine, Cl-2, dissolved in various room temperature ionic liquids using platinum microdisk electrodes. A single reductive voltammetric wave is seen and attributed to the two-electron reduction of chlorine to chloride. Studies of the effect of voltage scan rate reveal uniquely unusual behavior in which the magnitude of the currents decrease with increasing scan rates. A model for this is proposed and shown to indicate the presence of strongly adsorbed species in the electrode reaction mechanism, most likely chlorine atoms, Cl*((ads)).
Resumo:
The effects of such solutes such as halides and water on the physical properties of room temperature ionic liquids (RTILs) have been extensively studied, This work examines the effect of the solute carbon dioxide on the RTIL 1-ethyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([C(2)mim][NTf2]) and its influence on the electrochemical characterization of the important redox couple ferrocene/ferrocenium (Fc/Fc(+)). The system was studied using cyclic voltammetry, chronoamperometry, and electron spin resonance (ESR) spectroscopy. Addition Of 100% CO2 to a solution of Fc in [C(2)mim][NTf2] resulted in a substantial increase in both the limiting oxidative current and diffusion coefficient of Fc. Arrhenius plots of Fc diffusion coefficients in the pure and CO2-saturated ionic liquid revealed a decrease in activation energy of translational diffusion from 29.0 (+/- 0.5) kJ mol(-1) to 14.7 (+/- 1.6) kJ mol(-1), suggesting a reduction in the viscosity of the ionic liquid with addition Of CO2. ESR spectroscopy was then used to calculate the rotational correlation coefficients of a probe molecule, 2,2,6,6-tetramethyl-1-piperinyloxyl (TEMPO), to add supporting evidence to this hypothesis. Arrhenius plots of rotational correlation coefficients in the pure and CO2-saturated ionic liquid resulted in a similar drop in activation energy from 28.7 (+/- 2.1) kJ mol(-1) to 18.2 (+/- 5.6) kJ mol(-1). The effect of this solute on the ionic liquid [C(2)mim][NTf2] and on the electrochemical measurements of the Fc/Fc(+) couple emphasizes the necessity of fastidious sample preparation, as it is clear that the voltammetric currents of the electroactive species under study are influenced by the presence of CO2 in solution. The voltammetric response of the electroactive species in RTILs cannot be assumed to be independent of other solutes.