973 resultados para oily waste treatment
Resumo:
The main objective of this research was to evaluate the potential use of a bench-scale anaerobic sequencing batch biofilm reactor (ASBBR) containing mineral coal as inert support for removal Of Sulfide and organic matter effluents from an ASBBR (1.2 m(3)) utilized for treatment of sulfate-rich wastewater. The cycle time was 48 h, including the steps of feeding (2 h), reaction with continuous liquid recirculation (44 h) and discharge (2 h). COD removal efficiency was up to 90% and the effluents total sulfide concentrations (H(2)S, HS(-), S(2-)) remained in the range of 1.5 to 7.5 mg.l(-1) during the 50 days of operation (25 cycles). The un-ionized Sulfide and ionized sulfides were converted by biological process to elemental sulfur (S(0)) under oxygen limited conditions. The results obtained in the bench-scale reactor were used to design an ASBBR in pilot scale for use in post-treatment to achieve the emission standards (sulfide and COD) for sulfate reduction. The pilot-scale reactor, with a total volume of 0.43 m(3), the COD and total sulfide removal achieved 88% and 57%, respectively, for a cycle time of 48 h (70 days of operation or 35 cycles).
Resumo:
Currently diverse industries have high pollution potential because their productive processes generate great volumes of refractory effluents. These effluents are problematic, mainly due to the presence of recalcitrant compounds that are detrimental in wastewater treatment plants using biological systems in their processes. In general, biological treatments do not remove refractory elements. Also, in most cases these compounds can inhibit the yield or are toxic for biota responsible to remove the polluting agents. The Advanced Oxidative Processes (AOPs) represent a technological alternative with a great potential for treatment of no biodegradable effluents. In this paper a review of the use of advanced oxidatives processes: Ozone (O(3)), peroxide of hydrogen (H(2)O(2)) and ultraviolet radiation (UV) is presented applied to the treatment of recalcitrant effluents.
Resumo:
Recent studies have shown that partial oxidation by advanced oxidation processes (AOP) is able to transform hard-to-degrade compounds and increase their biodegradability. In this work, anaerobic treatment was followed by ozonation, UV radiation and ozonation in the presence of UV radiation, to treat bleaching effluents from a cellulose kraft Pulp plant. The anaerobic reactor (horizontal anaerobic immobilized Sludge bed, HAISB) was Used as a pretreatment to reduce the efficient organic load before applying ACIP. The ozone treatments were applied in three different pH environments (3, 8 and 10) with retention times of 10, 30, 45 and 60 min. COD and adsorbable organic halogens (AOX) removal efficiencies at the HAISB were approximately 50%, while the BOD removal efficiency reached 80%. Ozonation promoted further removal of AOX and COD so that the combined efficiency reached 96% for AOX and 70% for COD. In the oxidation process, BOD was either removed in small quantities or actually increased, as intended, so that a second biological treatment would be able to complete the treatment. The maximum increase in the BOD(5)/COD ratio (biodegradability indicator) Occurred at pH 8, reaching 104% for ozonation at a dosage of 1540 mg(O3).L(-1). Applying UV radiation alone resulted in lower values: a 34% increase ill the BOD(5)/COD ratio and a 76% AOX removal efficiency. These results indicate that the combination of anaerobic treatment with ozonation or ozonation/UV radiation improves the treatability of cellulose pulp bleaching efficients and that the resulting wastewater is suitable for further biological treatment under aerobic conditions with a low level of toxic compounds from the halogenated family.
Resumo:
The biological nitritation/denitritation process in the removal of organic matter and nitrogen in a landfill leachate was studied using an activated sludge sequencing batch reactor Treatment cycles were formed by an anoxic and an aerobic phases in which the conditions for oxidation of the influent N load and the prevalence of nitrite concentration at the end of aerobic treatment cycles were determined as well as the use of organic matter present in the leachate as a carbon source for denim-firing organisms in the anoxic stage The removal efficiencies of N-NO(2) at the end of the anoxic process (48h) ranged between 14 and 30% indicating low availability of biodegradable organic matter in the leachate As for the accumulation of N-NO(2) at the end of the aerobic phase (48h) of treatment cycles imbalances were not observed while 100% removal efficiencies of N and specific nth-dation rates from 0 095 to 0 158kgN-NH(3)/kgSSV per day were recorded demonstrating the applicability of simplified nitrification in the treatment of effluents with low C/N ratios
Resumo:
The solar driven photo-Fenton process for treating water containing phenol as a contaminant has been evaluated by means of pilot-scale experiments with a parabolic trough solar reactor (PTR). The effects of Fe(II) (0.04-1.0 mmol L(-1)), H(2)O(2) (7-270 mmol L(-1)), initial phenol concentration (100 and 500 mg C L(-1)), solar radiation, and operation mode (batch and fed-batch) on the process efficiency were investigated. More than 90% of the dissolved organic carbon (DOC) was removed within 3 hours of irradiation or less, a performance equivalent to that of artificially-irradiated reactors, indicating that solar light can be used either as an effective complementary or as an alternative source of photons for the photo-Fenton degradation process. A non-linear multivariable model based on a neural network was fit to the experimental results of batch-mode experiments in order to evaluate the relative importance of the process variables considered on the DOC removal over the reaction time. This included solar radiation, which is not a controlled variable. The observed behavior of the system in batch-mode was compared with fed-batch experiments carried out under similar conditions. The main contribution of the study consists of the results from experiments under different conditions and the discussion of the system behavior. Both constitute important information for the design and scale-up of solar radiation-based photodegradation processes.
Resumo:
The possibility of producing valued devices from low cost natural resources is a subject of broad interest. The present study explores the preparation and characterization of silk fibroin dense membranes using waste silk fibers from textile processing. Morphology, crystallinity, thermal resistance and cytotoxicity of membranes as well as the changes on the secondary structure of silk fibroin were analyzed after undergoing treatment with ethanol. Membranes presented amorphous patterns as determined via X-ray diffraction. The secondary structure of silk fibroin on dense membranes was either random coil (silk I) or p-sheet (silk II), before and after ethanol treatment, respectively. The sterilized membranes presented no cytotoxicity to endothelial cells during in vitro assays. This fact stresses the material potential to be used in the fabrication of biomaterials, as coatings of cardiovascular devices and as membranes for wound dressing or drug delivery systems. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The treatment of textile effluents by the conventional method based on activated sludge followed by a chlorination step is not usually an effective method to remove azo dyes, and can generate products more mutagenic than the untreated dyes. The present work evaluated the efficiency of conventional chlorination to remove the genotoxicity/mutagenicity of the azo dyes Disperse Red 1, Disperse Orange 1, and Disperse Red 13 from aqueous solutions. The comet and micronucleus assays with HepG2 cells and the Salmonella mutagenicity assay were used. The degradation of the dye molecules after the same treatment was also evaluated, using ultraviolet and visible absorption spectrum measurements (UV-vis), high performance liquid chromatography coupled to a diode-array detector (HPLC-DAD), and total organic carbon removal (TOC) analysis. The comet assay showed that the three dyes studied induced damage in the DNA of the HepG2 cells in a dose-dependent manner. After chlorination, these dyes remained genotoxic, although with a lower damage index (DI). The micronucleus test showed that the mutagenic activity of the dyes investigated was completely removed by chlorination, under the conditions tested. The Salmonella assay showed that chlorination reduced the mutagenicity of all three dyes in strain YG1041, but increased the mutagenicity of Disperse Red 1 and Disperse Orange 1 in strain TA98. With respect to chemical analysis, all the solutions showed rapid discoloration and a reduction in the absorbance bands characteristic of the chromophore group of each dye. However, the TOC was not completely removed, showing that chlorination of these dyes is not efficient in mineralizing them. It was concluded that conventional chlorination should be used with caution for the treatment of aqueous samples contaminated with azo dyes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Objectives The first objective of this study was to evaluate the radiological impact on relatives and the environment because of outpatient treatment of differentiated thyroid carcinoma with 3.7 and 5.55 GBq of ((131)I)NaI. The second objective was to determine, analyze, and evaluate whole-body radiation dose to caregivers, the production of contaminated solid waste, and the potentiality of radiation dose and surface contamination existing inside patients` households. Methods Twenty patients were treated on an outpatient basis, taking into consideration their acceptable living conditions, interests, and willingness to comply with medical and radiation-safety guidelines. The caregivers themselves, as well as the potentiality of the radiation dose inside patients` residences, were monitored with a thermo-luminescence dosimeter. Surface contamination and contaminated solid wastes were identified and measured by using a Geiger-Muller detector. Results and discussion Twenty-six monitored individuals received accumulated effective radiation doses of less than 1.0 mSv, and only one 2.8 mSv, throughout the 7 days of measurement. The maximum registered value for the potential of radiation dose inside all living areas was 1.30 mSv. The monitored surface contamination inside patients` dwellings showed a mean value of 4.2 Bq/cm(2) for all surfaces found to be contaminated. A total of 2.5l of contaminated solid waste was generated by the patients with 3.33 MBq of all estimated activity. Conclusion This study revealed that the treatment of differentiated thyroid carcinoma with 3.7 and 5.55 GBq of ((131)I)NaI, on an outpatient basis, can be safe when overseen by qualified professionals and with an adapted radiation-protection guideline. Even considering the radioiodine activity level and the dosimetric methodology applied here, negligible human exposure and a nonmeasurable radiological impact to the human environment were found. Nucl Med Commun 30:533-541 (C) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Recent years have seen the introduction of new and varied designs of activated sludge plants. With increasing needs for higher efficiencies and lower costs, the possibility of a plant that operates more effectively has created the need for tools that can be used to evaluate and compare designs at the design stage. One such tool is the operating space diagram. It is the aim of this paper to present this tool and demonstrate its application and relevance to design using a simple case study. In the case study, use of the operating space diagram suggested changes in design that would improve the flexibility of the process. It also was useful for designing suitable control strategies.
Resumo:
This work addresses the treatment by nanofiltration (NF) of solutions containing NaCN and NH(4)Cl at various pH values. The NF experiments are carried out in a Lab-Unit equipped with NF-270 membranes for model solutions that are surrogates of industrial ammoniacal wastewaters generated in the coke-making processes. The applied pressure is 30 bar. The main objective is the separation of the compounds NaCN and NH(4)Cl and the optimization of this separation as a function of the pH. Membrane performance is highly dependent on solution composition and characteristics, namely on the pH. In fact, the rejection coefficients for the binary model solution containing sodium cyanide are always higher than the rejections coefficients for the ammonium chloride model solution. For ternary solutions (cyanide/ammonium/water) it was observed that for pH values lower than 9 the rejection coefficients to ammonium are well above the ones observed for the cyanides, but for pH values higher than 9.5 there is a drastic decrease in the ammonium rejection coefficients with the increase of the pH. These results take into account the changes that occur in solution, namely, the solute species that are predominant, with the increase of the pH. The fluxes of the model solutions decreased with increased pH. (C) 2010 Elsevier B.V. All rights reserved.
Oxidative Leaching of metals from electronic waste with solutions based on quaternary ammonium salts
Resumo:
The treatment of electric and electronic waste (WEEE) is a problem which receives ever more attention. An inadequate treatment results in harmful products ending up in the environment. This project intends to investigate the possibilities of an alternative route for recycling of metals from printed circuit boards (PCBs) obtained from rejected computers. The process is based on aqueous solutions composed of an etchant, either 0.2 M CuCl2.2H2O or 0.2 M FeCl3.6H2O, and a quaternary ammonium salt (quat) such as choline chloride or chlormequat. These solutions are reminiscent of deep eutectic solvents (DES) based on quats. DES are quite similar to ionic liquids (ILs) and are used as well as alternative solvents with a great diversity of physical properties, making them attractive for replacement of hazardous, volatile solvents (e.g. VOCs). A remarkable difference between genuine DES and ILs with the solutions used in this project is the addition of rather large quantities of water. It is shown the presence of water has a lot of advantages on the leaching of metals, while the properties typical for DES still remain. The oxidizing capacities of Cu(II) stem from the existence of a stable Cu(I) component in quat based DES and thus the leaching stems from the activity of the Cu(II)/Cu(I) redox couple. The advantage of Fe(III) in combination with DES is the fact that the Fe(III)/Fe(II) redox couple becomes reversible, which is not true in pure water. This opens perspectives for regeneration of the etching solution. In this project the leaching of copper was studied as a function of gradual increasing water content from 0 - 100w% with the same concentration of copper chloride or iron(III) chloride at room temperature and 80ºC. The solutions were also tested on real PCBs. At room temperature a maximum leaching effect for copper was obtained with 30w% choline chloride with 0.2 M CuCl2.2H2O. The leaching effect is still stronger at 80°C, b ut of course these solutions are more energy consuming. For aluminium, tin, zinc and lead, the leaching was faster at 80ºC. Iron and nickel dissolved easily at room temperature. The solutions were not able to dissolve gold, silver, rhodium and platinum.
Resumo:
In this work three natural waste materials containing chitin were used as adsorbents for textile dyestuffs, namely the Anodonta (Anodonta cygnea) shell, the Sepia (Sepia officinalis) and the Squid (Loligo vulgaris) pens. The selected dyestuffs were the Cibacron green T3G-E (CI reactive green 12), and the Solophenyl green BLE 155% (CI direct green 26), both from CIBA, commonly used in cellulosic fibres dyeing, the most used fibres in the textile industry. Batch equilibrium studies showed that the materials’ adsorption capacities increase after a simple and inexpensive chemical treatment, which increases their porosity and chitin relative content. Kinetic studies suggested the existence of a high internal resistance in both systems. Fixed bed column experiments performed showed an improvement in adsorbents’ behaviour after chemical treatment. However, in the column experiments, the biodegradation was the main mechanism of dyestuff removal, allowing the materials’ bioregeneration. The adsorption was strongly reduced by the pore clogging effect of the biomass. The deproteinised Squid pen (grain size 0.500–1.41 mm) is the adsorbent with highest adsorption capacity (0.27 and 0.037 g/g, respectively, for the reactive and direct dyestuffs, at 20ºC), followed by the demineralised Sepia pen and Anodonta shell, behaving like pure chitin in all experiments, but showing inferior performances than the granular activated carbon tested in the column experiments.
Resumo:
This study uses the process simulator ASPEN Plus and Life Cycle Assessment (LCA) to compare three process design alternatives for biodiesel production from waste vegetable oils that are: the conventional alkali-catalyzed process including a free fatty acids (FFAs) pre-treatment, the acid-catalyzed process, and the supercritical methanol process using propane as co-solvent. Results show that the supercritical methanol process using propane as co-solvent is the most environmentally favorable alternative. Its smaller steam consumption in comparison with the other process design alternatives leads to a lower contribution to the potential environmental impacts (PEI’s). The acid-catalyzed process generally shows the highest PEI’s, in particular due to the high energy requirements associated with methanol recovery operations.
Resumo:
In this study, the effect of incorporation of recycled glass fibre reinforced plastics (GFRP) waste materials, obtained by means of shredding and milling processes, on mechanical behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates, between 4% up to 12% in weight, were incorporated into polyester PM materials as sand aggregates and filler replacements. The effect of the addition of a silane coupling agent to resin binder was also evaluated. Applied waste material was proceeding from the shredding of the leftovers resultant from the cutting and assembly processes of GFRP pultrusion profiles. Currently, these leftovers as well as non-conform products and scrap resulting from pultrusion manufacturing process are landfilled, with additional costs to producers and suppliers. Hence, besides the evident environmental benefits, a viable and feasible solution for these wastes would also conduct to significant economic advantages. Design of experiments and data treatment were accomplish by means of full factorial design approach and analysis of variance ANOVA. Experimental results were promising toward the recyclability of GFRP waste materials as partial replacement of aggregates and reinforcement for PM materials, with significant improvements on mechanical properties of resultant mortars with regards to waste-free formulations.
Resumo:
In this paper the adequacy and the benefit of incorporating glass fibre reinforced polymer (GFRP) waste materials into polyester based mortars, as sand aggregates and filler replacements, are assessed. Different weight contents of mechanically recycled GFRP wastes with two particle size grades are included in the formulation of new materials. In all formulations, a polyester resin matrix was modified with a silane coupling agent in order to improve binder-aggregates interfaces. The added value of the recycling solution was assessed by means of both flexural and compressive strengths of GFRP admixed mortars with regard to those of the unmodified polymer mortars. Planning of experiments and data treatment were performed by means of full factorial design and through appropriate statistical tools based on analyses of variance (ANOVA). Results show that the partial replacement of sand aggregates by either type of GFRP recyclates improves the mechanical performance of resultant polymer mortars. In the case of trial formulations modified with the coarser waste mix, the best results are achieved with 8% waste weight content, while for fine waste based polymer mortars, 4% in weight of waste content leads to the higher increases on mechanical strengths. This study clearly identifies a promising waste management solution for GFRP waste materials by developing a cost-effective end-use application for the recyclates, thus contributing to a more sustainable fibre-reinforced polymer composites industry.