944 resultados para nonsmall cell lung cancer
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Propolis effect on the growth and apoptosis of human lung adenocarcinoma (A549 cells) was investigated as well as its mechanisms. Cells were incubated with propolis for 72 h, and 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays were employed to assess cell viability and the inhibitory concentration (IC). Apoptosis was detected by Acridine Orange/Ethidium Bromide and 4',6-diamidino-2-phenylindole staining after 24 and 48 h of incubation with ¼ IC50 of propolis by testing the mitochondrial membrane potential (ΔΨm) and the expression of apoptosis-related genes (p53, Caspase-3, Bax, Bcl-2, Bcl-XL , Noxa, Puma and p21) by reverse transcription polymerase chain reaction. Propolis displayed antiproliferative and cytotoxic effects on A549 cells in a dose- and time-dependent manner, but it did not suppress the growth of normal Vero cells. An enhanced apoptosis was seen in A549 propolis-treated cells after 48 h compared with the control cells. Propolis decreased mitochondrial membrane potential by overexpression of pro-apoptotic genes (Bax and Noxa) and reduction of the antiapoptotic gene Bcl-XL . The expression level of other genes remained unchanged (p53, Caspse-3 and Bax), whereas p21 expression was increased. Propolis induced caspase-independent apoptosis through a p53-independent mitochondrial pathway, and cell cycle arrest by upregulation of p21. Although propolis induces apoptosis mainly by p53-independent manner, it may be induced by another pathway, and new insights may arise for preventing or treating lung cancer.
Resumo:
Aims: Development of effective immune-based therapies for patients with non-small-cell lung carcinoma (NSCLC) depends on an accurate characterization of complex interactions that occur between immune cells and the tumour environment. Methods and results: Innate and adaptive immune responses were evaluated in relation to prognosis in 65 patients with surgically excised NSCLC. Immunohistochemistry and morphometry were used to determine the abundance and distribution of immune cells. We found low numbers of immune cells and levels of cytokines in the tumour environment when compared with surrounding parenchyma. Smoking was associated inversely with the adaptive immune response and directly with innate immunity. We observed a prominent adaptive immune response in squamous cell carcinomas (SCC) but greater innate immune responses in adenocarcinomas and large cell carcinomas. Cox model analysis showed a low risk of death for smoking <41 packs/year, N-0 tambour stage, squamous carcinoma, CD4(+) > 16.81% and macrophages/monocytes >4.5%. Collectively, the data indicate that in NSCLC there is not a substantive local immune cell infiltrate within the tumour. Conclusion: Although immune cell infiltration is limited in NSCLC it appears to have an impact on prognosis and this may be of relevance for new immunotherapeutic approaches.
Resumo:
Tissue transglutaminase (TG2) is implicated in cellular processes such as apoptosis and cell migration. Its acyl transferase activity cross-links certain proteins, among them transcription factors were described. We show here that the TG2 inhibitor KCC009 reversed resistance to tumor necrosis factor-related apoptosis-inducing factor (TRAIL) in lung cancer cells. Sensitization required upregulation of death receptor 5 (DR5) but not of death receptor 4. Upregulation of DR5 involved the first intron of the DR5 gene albeit it was independent from p53 and nuclear factor kappa B. In conclusion, inhibition of tissue transglutaminase provides an interesting strategy for sensitization to TRAIL-induced apoptosis in p53-deficient lung cancer cells.
Resumo:
Lung cancer is the leading cause of cancer-related mortality worldwide and more than 1 million people annually die in consequence of lung cancer. Although an improvement in lung cancer treatment could be achieved, especially in the last decade, the development of additional therapeutic strategies is urgently required in order to provide improved survival benefit for patients. Lung cancer formation is caused by genetic modifications commonly caused by tobacco smoking. Numerous studies have demonstrated the role of extracellular growth factors in lung cancer cell proliferation, metastasis, and chemoresistance. Mutations and amplifications in molecules related to receptor tyrosine signalling, such as EGFR, ErbB2, c-Met, c-Kit, VEGFR, PI3K, and PTEN are only some of the alterations known to contribute to the development of lung cancer. The phosphoinositide 3-kinase (PI3K) pathway, fundamental for cell development, growth, and survival, is known to be frequently altered in neoplasia, including carcinomas of the lung. Based on the high frequency of alterations, which include mutations and amplifications, leading to over-activation of certain upstream/downstream mediators, targeting components of the PI3K signalling pathway is considered to be a promising therapeutic approach in cancer treatment. In this article we will summarize the current knowledge about the involvement of PI3K signalling in lung cancer and discuss the development of targeted therapies involving PI3K pathway inhibitors.
Resumo:
Gastrointestinal peptide hormone receptors, like somatostatin receptors, are often overexpressed in human cancer, allowing receptor-targeted tumor imaging and therapy. A novel candidate for these applications is the secretin receptor recently identified in pancreatic and cholangiocellular carcinomas. In the present study, secretin receptors were assessed in a non-gastrointestinal tissue, the human lung. Non-small-cell lung cancers (n=26), small-cell lung cancers (n=10), bronchopulmonary carcinoid tumors (n=29), and non-neoplastic lung (n=46) were investigated for secretin receptor protein expression with in vitro receptor autoradiography, using (125)I-[Tyr(10)] rat secretin and for secretin receptor transcripts with RT-PCR. Secretin receptor protein expression was found in 62% of bronchopulmonary carcinoids in moderate to high density, in 12% of non-small cell lung cancers in low density, but not in small cell lung cancers. In tumors found to be secretin receptor positive by autoradiography, RT-PCR revealed transcripts for the wild-type secretin receptor and for novel secretin receptor splice variants. In the non-neoplastic lung, secretin receptor protein expression was observed in low density along the alveolar septa in direct tumor vicinity in cases of acute inflammation, but not in histologically normal lung. In the autoradiographically positive peritumoral lung, RT-PCR showed transcripts for the wild-type secretin receptor and for a secretin receptor spliceoform different from those occurring in lung and gut tumors. In conclusion, secretin receptors are new markers for bronchopulmonary carcinoid tumors, and represent the molecular basis for an in vivo targeting of carcinoid tumors for diagnosis and therapy. Furthermore, secretin receptors may play a role in peritumoral lung pathophysiology. Secretin receptor mis-splicing specifically occurs in tumor and non-tumor lung pathology.
Resumo:
BACKGROUND: With the emergence of Src inhibitors in clinical trials, improved knowledge of the molecular responses of cancer cells to these agents is warranted. This will facilitate the development of tests to identify patients who may benefit from these agents, allow drug activity to be monitored and rationalize the combination of these agents with other treatment modalities. METHODS: This study evaluated the molecular and functional effects of Src inhibitor AZD0530 in human lung cancer cells, by Western blotting and reverse transcription-polymerase chain reaction, and by assays for cell viability, migration, and invasion. RESULTS: Src was activated in four of five cell lines tested and the level corresponded with the invasive potential and the histologic subtype. Clinically relevant, submicromolar concentrations of AZD0530 blocked Src and focal adhesion kinase, resulting in significant inhibition of cell migration and Matrigel invasion. Reactivation of STAT3 and up-regulation of JAK indicated a potential mechanism of resistance. AZD0530 gave a potent and sustained blockage of AKT and enhanced the sensitivity to irradiation. CONCLUSIONS: The results indicated that AZD0530, aside from being a potent inhibitor of tumor cell invasion which could translate to inhibition of disease progression in the clinic, may also lower resistance of lung cancer cells to pro-apoptotic signals.
Resumo:
ABSTRACT Aims: ID1 is an important component of the MET-SRC signaling pathway, which is a regulator of cell migration and invasion. We hypothesized that the ALK/MET inhibitor crizotinib inhibits migration via MET-SRC-ID1, rather than ALK. Materials & methods: We used ALK fusion-positive and -negative lung cancer cell lines; crizotinib, PHA-665752, and saracatinib, and stable transfection with shMET. We performed western blotting for p-ALK, ALK, p-MET, MET, p-SRC, SRC and ID1, and quantitative real-time PCR for ID1. Results: Crizotinib decreased p-MET, p-SRC and ID1 levels in ALK- and or MET-positive cell lines and inhibited cell migration. Knockdown of MET was comparable with the effect of crizotinib. Conclusion: The effects of crizotinib on ID1 expression and cancer cell migration were associated with the presence of activated MET, rather than ALK fusion.
Resumo:
One alternative approach for the treatment of lung cancer might be the activation of the immune system using vaccination strategies. However, most of clinical vaccination trials for lung cancer did not reach their primary end points, suggesting that lung cancer is of low immunogenicity. To provide additional experimental information about this important issue, we investigated which type of immune cells contributes to the protection from lung cancer development. Therefore, A/J mice induced for lung adenomas/adenocarcinomas by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) were depleted of CD4(+) or CD8(+) T cells, CD11b(+) macrophages, Gr-1(+) neutrophils and asialo GM1(+) natural killer (NK) cells. Subsequent analysis of tumour growth showed an increase in tumour number only in mice depleted of NK cells. Further asking by which mechanism NK cells suppressed tumour development, we neutralized several death ligands of the tumour necrosis factor (TNF) family known to be involved in NK cell-mediated cytotoxicity. However, neither depletion of TNF-α, TNF-related apoptosis-inducing ligand, TNF-like weak inducer of apoptosis or FasL alone nor in combination induced an augmentation of tumour burden. To show whether an alternative cell death pathway is involved, we next generated A/J mice deficient for perforin. After challenging with NNK, mice deficient for perforin showed an increase in tumour number and volume compared to wild-type A/J mice. In summary, our data suggest that NK cells and perforin-mediated cytolysis are critically involved in the protection from lung cancer giving promise for further immunotherapeutic strategies for this disease.
Resumo:
BACKGROUND The aim of this study was to assess sex-associated differences in lung cancer patients in Eastern Switzerland. METHODS All 670 lung cancer patients referred to the cancer center in St. Gallen between January 2000 and December 2005 were retrospectively analyzed. We investigated sex-associated differences in age, smoking habits, histology, stage, treatment and survival. RESULTS There were 474 (71%) men and 196 (29%) women with lung cancer. Mean age at the time of diagnosis was 64 years for women and 67 years for men (p = 0.01). Of the patients <55 years of age, 47 (24%) were women and only 65 (14%) were men. Men smoked significantly more than women (median pack-years: 50 vs. 30; p < 0.001). Of the heavy smokers (>40 pack-years), 278 (56%) were men and 68 (33%) were women. More men had squamous cell carcinoma (36%) than women (17%). Conversely, more women presented with adenocarcinoma (48%) than men (27%). No significant sex-associated differences were observed when analyzing first treatments received. Median overall survival was 10 months for both sexes. CONCLUSIONS In Eastern Switzerland, women with lung cancer were younger, more likely to have smoked significantly less and more likely to have adenocarcinoma, compared to men with lung cancer. These findings are consistent with those found in other western populations.
Resumo:
A population-based case-comparison study of histologically confirmed lung cancer among white male and female residents of six Texas coastal counties was conducted from 1979-1982. Dietary information as well as information concerning smoking, alcohol consumption, occupational and residential exposures, and family history of cancer was obtained from 149 living cases and 359 comparison subjects.^ These data support the findings of previous studies that reported a protective association of total carotene intake with lung cancer (OR = 4.07, CI = 3.36-4.78), and no association for total Vitamin A or retinol. Of six specific carotenoids examined, these data reveal a statistically significant protective effect for alpha carotene (OR = 3.58, CI = 2.85-4.31), and an elevated, although non-significant effect for beta carotene (OR = 1.46, CI = 0.61-2.31). No consistent significant effect was found for cryptoxanthin, other xanthins, lutein or lycopene.^ Similar results were found for both males and females, and for both squamous cell and adenocarcinoma subtypes, although loss of power resulting from stratification may have rendered the celltype specific results more imprecise. These results should be considered with caution until confirmed by other studies, however, they suggest the importance of evaluating specific carotenoids in future diet-lung cancer investigations. ^
Resumo:
This case control study was conducted to assess the association between lung cancer risk, mutagen sensitivity (a marker of cancer susceptibility), and a putative lung carcinogen, wood dust exposure. There were 165 cases (98 African-Americans, 67 Mexican-Americans) with newly diagnosed, previously untreated lung cancer, and 239 controls, frequency-matched on age, sex, and ethnicity.^ Mutagen sensitivity ($\ge$1 break/cell) was associated with a statistically significant elevated risk for lung cancer (odds ratio (OR) = 4.1, 95% confidence limits (CL) = 2.3,7.2). Wood dust exposure was also a significant predictor of risk (OR = 2.8, 95% CL = 1.2,6.6) after controlling for smoking and mutagen sensitivity. When stratified by ethnicity, wood dust exposure was a significant risk factor for African-Americans (OR = 4.0, 95% CL = 1.4,11.5), but not for Mexican-Americans (OR = 1.5, 95% CL = 0.3,7.1). Stratified analysis suggested a greater than multiplicative interaction between wood dust exposure and both mutagen sensitivity and smoking.^ The cases had significantly more breaks on chromosomes 4 and 5 than the controls did with ORs of 4.9 (95% CL = 2.0, 11.7) and 3.9 (95% CL = 1.6, 9.3), respectively. Breaks at 4p14, 4q27, 4q31, 5q21-22, 5q31, and 5q33 were significantly more common in lung cancer patients than in controls. Lung cancer risk had a dose-response relationship with breaks on chromosomes 4 and 5. Cigarette smoking had a strong interaction with breaks on chromosomes 2, 4, and 5.^ In a molecular cytogenetic study, using chromosome painting and G-banding, we showed that: (1) the proportion of chromosome 5 abnormalities surviving as chromosome-type aberrations remained significantly higher in cells of lung cancer cases (14%) than in controls (5%) (P $<$ 0.001). However, no significant differences were detected in chromosome 4 abnormalities between cases and controls; (2) the proportion of chromosome 5q13-22 abnormalities was 5.3% in the cases and 0.7% in the controls (P $<$ 0.001). 5q13-22 regions represented 40% of all abnormalities on chromosome 5 in the cases and only 14% in the controls.^ This study suggests that mutagen sensitivity, wood dust exposure, and cigarette smoking were independent risk factors for lung cancer, and the susceptibility of particular chromosome loci to mutagenic damage may be a genetic marker for specific types of lung cancer. ^
Resumo:
Lung cancer is the leading cause of cancer death in both men and women in the United States and worldwide. Despite improvement in treatment strategies, the 5-year survival rate of lung cancer patients remains low. Thus, effective chemoprevention and treatment approaches are sorely needed. Mutations and activation of KRAS occur frequently in tobacco users and the early stage of development of non-small cell lung cancers (NSCLC). So they are thought to be the primary driver for lung carcinogenesis. My work showed that KRAS mutations and activations modulated the expression of TNF-related apoptosis-inducing ligand (TRAIL) receptors by up-regulating death receptors and down-regulating decoy receptors. In addition, we showed that KRAS suppresses cellular FADD-like IL-1β-converting enzyme (FLICE)-like inhibitory protein (c-FLIP) expression through activation of ERK/MAPK-mediated activation of c-MYC which means the mutant KRAS cells could be specifically targeted via TRAIL induced apoptosis. The expression level of Inhibitors of Apoptosis Proteins (IAPs) in mutant KRAS cells is usually high which could be overcome by the second mitochondria-derived activator of caspases (Smac) mimetic. So the combination of TRAIL and Smac mimetic induced the synthetic lethal reaction specifically in the mutant-KRAS cells but not in normal lung cells and wild-type KRAS lung cancer cells. Therefore, a synthetic lethal interaction among TRAIL, Smac mimetic and KRAS mutations could be used as an approach for chemoprevention and treatment of NSCLC with KRAS mutations. Further data in animal experiments showed that short-term, intermittent treatment with TRAIL and Smac mimetic induced apoptosis in mutant KRAS cells and reduced tumor burden in a KRAS-induced pre-malignancy model and mutant KRAS NSCLC xenograft models. These results show the great potential benefit of a selective therapeutic approach for the chemoprevention and treatment of NSCLC with KRAS mutations.
Resumo:
Antagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of various cancers in vivo. This effect is thought to be exerted through suppression of the pituitary growth hormone–hepatic insulin-like growth factor I (IGF-I) axis and direct inhibition of autocrine/paracrine production of IGF-I and -II in tumors. However, other evidence points to a direct effect of GHRH antagonists on tumor growth that may not implicate IGFs, although an involvement of GHRH in the proliferation of cancer cells has not yet been established. In the present study we investigated whether GHRH can function as an autocrine/paracrine growth factor in small cell lung carcinoma (SCLC). H-69 and H-510A SCLC lines cultured in vitro express mRNA for GHRH, which apparently is translated into peptide GHRH and then secreted by the cells, as shown by the detection of GHRH-like immunoreactivity in conditioned media from the cells cultured in vitro. In addition, the levels of GHRH-like immunoreactivity in serum from nude mice bearing H-69 xenografts were higher than in tumor-free mice. GHRH(1–29)NH2 stimulated the proliferation of H-69 and H-510A SCLCs in vitro, and GHRH antagonist JV-1–36 inhibited it. JV-1–36 administered s.c. into nude mice bearing xenografts of H-69 SCLC reduced significantly (P < 0.05) tumor volume and weight, after 31 days of therapy, as compared with controls. Collectively, our results suggest that GHRH can function as an autocrine growth factor in SCLCs. Treatment with antagonistic analogs of GHRH may offer a new approach to the treatment of SCLC and other cancers.
Resumo:
Merkel cell carcinoma (MCC) is a rare aggressive skin tumor which shares histopathological and genetic features with small-cell lung carcinoma (SCLC), both are of neuroendocrine origin. Comparable to SCLC, MCC cell lines are classified into two different biochemical subgroups designated as 'Classic' and 'Variant'. With the aim to identify typical gene-expression signatures associated with these phenotypically different MCC cell lines subgroups and to search for differentially expressed genes between MCC and SCLC, we used cDNA arrays to pro. le 10 MCC cell lines and four SCLC cell lines. Using significance analysis of microarrays, we defined a set of 76 differentially expressed genes that allowed unequivocal identification of Classic and Variant MCC subgroups. We assume that the differential expression levels of some of these genes reflect, analogous to SCLC, the different biological and clinical properties of Classic and Variant MCC phenotypes. Therefore, they may serve as useful prognostic markers and potential targets for the development of new therapeutic interventions specific for each subgroup. Moreover, our analysis identified 17 powerful classifier genes capable of discriminating MCC from SCLC. Real-time quantitative RT-PCR analysis of these genes on 26 additional MCC and SCLC samples confirmed their diagnostic classification potential, opening opportunities for new investigations into these aggressive cancers.