879 resultados para next-generation sequencing
Resumo:
The identification of genetic causes for Mendelian disorders has been based on the collection of multi-incident families, linkage analysis, and sequencing of genes in candidate intervals. This study describes the application of next-generation sequencing technologies to a Swiss kindred presenting with autosomal-dominant, late-onset Parkinson disease (PD). The family has tremor-predominant dopa-responsive parkinsonism with a mean onset of 50.6 ± 7.3 years. Exome analysis suggests that an aspartic-acid-to-asparagine mutation within vacuolar protein sorting 35 (VPS35 c.1858G>A; p.Asp620Asn) is the genetic determinant of disease. VPS35 is a central component of the retromer cargo-recognition complex, is critical for endosome-trans-golgi trafficking and membrane-protein recycling, and is evolutionarily highly conserved. VPS35 c.1858G>A was found in all affected members of the Swiss kindred and in three more families and one patient with sporadic PD, but it was not observed in 3,309 controls. Further sequencing of familial affected probands revealed only one other missense variant, VPS35 c.946C>T; (p.Pro316Ser), in a pedigree with one unaffected and two affected carriers, and thus the pathogenicity of this mutation remains uncertain. Retromer-mediated sorting and transport is best characterized for acid hydrolase receptors. However, the complex has many types of cargo and is involved in a diverse array of biologic pathways from developmental Wnt signaling to lysosome biogenesis. Our study implicates disruption of VPS35 and retromer-mediated trans-membrane protein sorting, rescue, and recycling in the neurodegenerative process leading to PD.
Resumo:
The fundamentals of Real-time Polymerase Chain Reaction,Automated capillary electrophoresis -Sanger sequencing and Fragmentanalysis- and "Next-generation" sequencing are reviewed. An overview ofapplications is presented using our own examples carried out in our facility.
Resumo:
Next-generation sequencing techniques such as exome sequencing can successfully detect all genetic variants in a human exome and it has been useful together with the implementation of variant filters to identify causing-disease mutations. Two filters aremainly used for the mutations identification: low allele frequency and the computational annotation of the genetic variant. Bioinformatic tools to predict the effect of a givenvariant may have errors due to the existing bias in databases and sometimes show a limited coincidence among them. Advances in functional and comparative genomics are needed in order to properly annotate these variants.The goal of this study is to: first, functionally annotate Common Variable Immunodeficiency disease (CVID) variants with the available bioinformatic methods in order to assess the reliability of these strategies. Sencondly, as the development of new methods to reduce the number of candidate genetic variants is an active and necessary field of research, we are exploring the utility of gene function information at organism level as a filter for rare disease genes identification. Recently, it has been proposed that only 10-15% of human genes are essential and therefore we would expect that severe rare diseases are mostly caused by mutations on them. Our goal is to determine whether or not these rare and severe diseases are caused by deleterious mutations in these essential genes. If this hypothesis were true, taking into account essential genes as a filter would be an interesting parameter to identify causingdisease mutations.
Resumo:
Several studies over the last few years have shown that newly arising (de novo) mutations contribute to the genetics of schizophrenia (SZ), autism (ASD) and other developmental disorders. The strongest evidence comes from studies of de novo Copy Number Variation (CNV), where the rate of new mutations is shown to be increased in cases when compared to controls [23, 24]. Research on de novo point mutations and small insertion-deletions (indels) has been more limited, but with the development of next-generation sequencing (NGS) technology, such studies are beginning to provide preliminary evidence that de novo single-nucleotide mutations (SNVs) might also increase risk of SZ and ASD [25, 26] Advanced paternal age is a major source of new mutations in human beings [27] and could thus be associated with increased risk for developing SZ, ASD or other developmental disorders. Indeed, advanced paternal age is found to be a risk factor for developing SZ and ASD in the offspring [28, 29] and new mutations related to advanced paternal age have been implicated as a cause of sporadic cases in several autosomal dominant diseases, some neurodevelopmental diseases, including SZ and ASD, and social functioning. New single-base substitutions occur at higher rates at males compared to females and this difference increases with paternal age. This is due to the fact that sperm cells go through a much higher number of cell divisions (~840 by the age of 50), which increases the risk for DNA copy errors in the male germ line [30] . By contrast, the female eggs (oocytes) undergo only 24 cell divisions and all but the last occur during foetal life. The aim of my project is to determine the parent-of-origin of de novo SNVs, using large samples of parent-offspring trios affected with schizophrenia (SZ). From whole exome sequencing of 618 Bulgarian proband-offspring trios affected, nearly 1000 de novo (SNVs or small indels) have been identified and from these, the parent-of-origin of at least 60% of the mutations (N=600) can be established. This project is contained in a main one that consists on the determination of the parental origin of different types of de novo mutations (SNVs, small indels and large CNVs).
Resumo:
BACKGROUND/AIMS: Calcium homeostasis requires regulated cellular and interstitial systems interacting to modulate the activity and movement of this ion. Disruption of these systems in the kidney results in nephrocalcinosis and nephrolithiasis, important medical problems whose pathogenesis is incompletely understood. METHODS: We investigated 25 patients from 16 families with unexplained nephrocalcinosis and characteristic dental defects (amelogenesis imperfecta, gingival hyperplasia, impaired tooth eruption). To identify the causative gene, we performed genome-wide linkage analysis, exome capture, next-generation sequencing, and Sanger sequencing. RESULTS: All patients had bi-allelic FAM20A mutations segregating with the disease; 20 different mutations were identified. CONCLUSIONS: This autosomal recessive disorder, also known as enamel renal syndrome, of FAM20A causes nephrocalcinosis and amelogenesis imperfecta. We speculate that all individuals with biallelic FAM20A mutations will eventually show nephrocalcinosis.
Resumo:
Multicentric carpotarsal osteolysis (MCTO) is a rare skeletal dysplasia characterized by aggressive osteolysis, particularly affecting the carpal and tarsal bones, and is frequently associated with progressive renal failure. Using exome capture and next-generation sequencing in five unrelated simplex cases of MCTO, we identified previously unreported missense mutations clustering within a 51 base pair region of the single exon of MAFB, validated by Sanger sequencing. A further six unrelated simplex cases with MCTO were also heterozygous for previously unreported mutations within this same region, as were affected members of two families with autosomal-dominant MCTO. MAFB encodes a transcription factor that negatively regulates RANKL-induced osteoclastogenesis and is essential for normal renal development. Identification of this gene paves the way for development of novel therapeutic approaches for this crippling disease and provides insight into normal bone and kidney development.
Resumo:
Pseudomonas knackmussii B13 was the first strain to be isolated in 1974 that could degrade chlorinated aromatic hydrocarbons. This discovery was the prologue for subsequent characterization of numerous bacterial metabolic pathways, for genetic and biochemical studies, and which spurred ideas for pollutant bioremediation. In this study, we determined the complete genome sequence of B13 using next generation sequencing technologies and optical mapping. Genome annotation indicated that B13 has a variety of metabolic pathways for degrading monoaromatic hydrocarbons including chlorobenzoate, aminophenol, anthranilate and hydroxyquinol, but not polyaromatic compounds. Comparative genome analysis revealed that B13 is closest to Pseudomonas denitrificans and Pseudomonas aeruginosa. The B13 genome contains at least eight genomic islands [prophages and integrative conjugative elements (ICEs)], which were absent in closely related pseudomonads. We confirm that two ICEs are identical copies of the 103 kb self-transmissible element ICEclc that carries the genes for chlorocatechol metabolism. Comparison of ICEclc showed that it is composed of a variable and a 'core' region, which is very conserved among proteobacterial genomes, suggesting a widely distributed family of so far uncharacterized ICE. Resequencing of two spontaneous B13 mutants revealed a number of single nucleotide substitutions, as well as excision of a large 220 kb region and a prophage that drastically change the host metabolic capacity and survivability.
Mutational screening of splicing factor genes in cases with autosomal dominant retinitis pigmentosa.
Resumo:
PURPOSE: Mutations in genes encoding proteins from the tri-snRNP complex of the spliceosome account for more than 12% of cases of autosomal dominant retinitis pigmentosa (adRP). Although the exact mechanism by which splicing factor defects trigger photoreceptor death is not completely clear, their role in retinitis pigmentosa has been demonstrated by several genetic and functional studies. To test for possible novel associations between splicing factors and adRP, we screened four tri-snRNP splicing factor genes (EFTUD2, PRPF4, NHP2L1, and AAR2) as candidate disease genes. METHODS: We screened up to 303 patients with adRP from Europe and North America who did not carry known RP mutations. Exon-PCR and Sanger methods were used to sequence the NHP2L1 and AAR2 genes, while the sequences of EFTUD2 and PRPF4 were obtained by using long-range PCRs spanning coding and non-coding regions followed by next-generation sequencing. RESULTS: We detected novel missense changes in individual patients in the sequence of the genes PRPF4 and EFTUD2, but the role of these changes in relationship to disease could not be verified. In one other patient we identified a novel nucleotide substitution in the 5' untranslated region (UTR) of NHP2L1, which did not segregate with the disease in the family. CONCLUSIONS: The absence of clearly pathogenic mutations in the candidate genes screened in our cohort suggests that EFTUD2, PRPF4, NHP2L1, and AAR2 are either not involved in adRP or are associated with the disease in rare instances, at least as observed in this study in patients of European and North American origin.
Resumo:
Pseudomonas knackmussii B13 was the first strain to be isolated in 1974 that could degrade chlorinated aromatic hydrocarbons. This discovery was the prologue for subsequent characterization of numerous bacterial metabolic pathways, for genetic and biochemical studies, and which spurred ideas for pollutant bioremediation. In this study, we determined the complete genome sequence of B13 using next generation sequencing technologies and optical mapping. Genome annotation indicated that B13 has a variety of metabolic pathways for degrading monoaromatic hydrocarbons including chlorobenzoate, aminophenol, anthranilate and hydroxyquinol, but not polyaromatic compounds. Comparative genome analysis revealed that B13 is closest to Pseudomonas denitrificans and Pseudomonas aeruginosa. The B13 genome contains at least eight genomic islands [prophages and integrative conjugative elements (ICEs)], which were absent in closely related pseudomonads. We confirm that two ICEs are identical copies of the 103 kb self-transmissible element ICEclc that carries the genes for chlorocatechol metabolism. Comparison of ICEclc showed that it is composed of a variable and a 'core' region, which is very conserved among proteobacterial genomes, suggesting a widely distributed family of so far uncharacterized ICE. Resequencing of two spontaneous B13 mutants revealed a number of single nucleotide substitutions, as well as excision of a large 220 kb region and a prophage that drastically change the host metabolic capacity and survivability.
Resumo:
Genetics is the study of heredity, which means the study of genes and factors related to all aspects of genes. The scientific history of genetics began with the works of Gregor Mendel in the mid-19th century. Prior to Mendel, genetics was primarily theoretical whilst, after Mendel, the science of genetics was broadened to include experimental genetics. Developments in all fields of genetics and genetic technology in the first half of the 20th century provided a basis for the later developments. In the second half of the 20th century, the molecular background of genetics has become more understandable. Rapid technological advancements, followed by the completion of Human Genome Project, have contributed a great deal to the knowledge of genetic factors and their impact on human life and diseases. Currently, more than 1800 disease genes have been identified, more than 2000 genetic tests have become available, and in conjunction with this at least 350 biotechnology-based products have been released onto the market. Novel technologies, particularly next generation sequencing, have dramatically accelerated the pace of biological research, while at the same time increasing expectations. In this paper, a brief summary of genetic history with short explanations of most popular genetic techniques is given.
Resumo:
Planarian flatworms are an exception among bilaterians in that they possess a large pool of adult stem cells that enables them to promptly regenerate any part of their body, including the brain. Although known for two centuries for their remarkable regenerative capabilities, planarians have only recently emerged as an attractive model for studying regeneration and stem cell biology. This revival is due in part to the availability of a sequenced genome and the development of new technologies, such as RNA interference and next-generation sequencing, which facilitate studies of planarian regeneration at the molecular level. Here, we highlight why planarians are an exciting tool in the study of regeneration and its underlying stem cell biology in vivo, and discuss the potential promises and current limitations of this model organism for stem cell research and regenerative medicine.
Resumo:
Next-generation sequencing (NGS) technologies have become the standard for data generation in studies of population genomics, as the 1000 Genomes Project (1000G). However, these techniques are known to be problematic when applied to highly polymorphic genomic regions, such as the human leukocyte antigen (HLA) genes. Because accurate genotype calls and allele frequency estimations are crucial to population genomics analyses, it is important to assess the reliability of NGS data. Here, we evaluate the reliability of genotype calls and allele frequency estimates of the single-nucleotide polymorphisms (SNPs) reported by 1000G (phase I) at five HLA genes (HLA-A, -B, -C, -DRB1, and -DQB1). We take advantage of the availability of HLA Sanger sequencing of 930 of the 1092 1000G samples and use this as a gold standard to benchmark the 1000G data. We document that 18.6% of SNP genotype calls in HLA genes are incorrect and that allele frequencies are estimated with an error greater than ±0.1 at approximately 25% of the SNPs in HLA genes. We found a bias toward overestimation of reference allele frequency for the 1000G data, indicating mapping bias is an important cause of error in frequency estimation in this dataset. We provide a list of sites that have poor allele frequency estimates and discuss the outcomes of including those sites in different kinds of analyses. Because the HLA region is the most polymorphic in the human genome, our results provide insights into the challenges of using of NGS data at other genomic regions of high diversity.
Resumo:
Planarians are a group of free-living platyhelminths (triclads) best-known largely due to long-standing regeneration and pattern formation research. However, the group"s diversity and evolutionary history has been mostly overlooked. A few taxonomists have focused on certain groups, resulting in the description of many species and the establishment of higher-level groups within the Tricladida. However, the scarcity of morphological features precludes inference of phylogenetic relationships among these taxa. The incorporation of molecular markers to study their diversity and phylogenetic relationships has facilitated disentangling many conundrums related to planarians and even allowed their use as phylogeographic model organisms. Here, we present some case examples ranging from delimiting species in an integrative style, and barcoding them, to analysing their evolutionary history on a lower scale to infer processes affecting biodiversity origin, or on a higher scale to understand the genus level or even higher relationships. In many cases, these studies have allowed proposing better classifications and resulted in taxonomical changes. We also explain shortcomings resulting in a lack of resolution or power to apply the most up-to-date data analyses. Next-generation sequencing methodologies may help improve this situation and accelerate their use as model organisms.
Resumo:
Thyroid fine-needle aspiration (FNA) cytology is a fast growing field. One of the most developing areas is represented by molecular tests applied to cytological material. Patients that could benefit the most from these tests are those that have been diagnosed as 'indeterminate' on FNA. They could be better stratified in terms of malignancy risk and thus oriented with more confidence to the appropriate management. Taking in to consideration the need to improve and keep high the yield of thyroid FNA, professionals from various fields (i.e. molecular biologists, endocrinologists, nuclear medicine physicians and radiologists) are refining and fine-tuning their diagnostic instruments. In particular, all these developments aim at increasing the negative predictive value of FNA to improve the selection of patients for diagnostic surgery. These advances involve terminology, the application of next-generation sequencing to thyroid FNA, the use of immunocyto- and histo-chemistry, the development of new sampling techniques and the increasing use of nuclear medicine as well as molecular imaging in the management of patients with a thyroid nodule. Herein, we review the recent advances in thyroid FNA cytology that could be of interest to the 'thyroid-care' community, with particular focus on the indeterminate diagnostic category.
Resumo:
Following protection measures implemented since the 1970s, large carnivores are currently increasing in number and returning to areas from which they were absent for decades or even centuries. Monitoring programmes for these species rely extensively on non-invasive sampling and genotyping. However, attempts to connect results of such studies at larger spatial or temporal scales often suffer from the incompatibility of genetic markers implemented by researchers in different laboratories. This is particularly critical for long-distance dispersers, revealing the need for harmonized monitoring schemes that would enable the understanding of gene flow and dispersal dynamics. Based on a review of genetic studies on grey wolves Canis lupus from Europe, we provide an overview of the genetic markers currently in use, and identify opportunities and hurdles for studies based on continent-scale datasets. Our results highlight an urgent need for harmonization of methods to enable transnational research based on data that have already been collected, and to allow these data to be linked to material collected in the future. We suggest timely standardization of newly developed genotyping approaches, and propose that action is directed towards the establishment of shared single nucleotide polymorphism panels, next-generation sequencing of microsatellites, a common reference sample collection and an online database for data exchange. Enhanced cooperation among genetic researchers dealing with large carnivores in consortia would facilitate streamlining of methods, their faster and wider adoption, and production of results at the large spatial scales that ultimately matter for the conservation of these charismatic species.