987 resultados para near-infrared spectroscopy
Resumo:
Two-dimensional infrared spectra of peptides are introduced that are the direct analogues of two- and three-pulse multiple quantum NMR. Phase matching and heterodyning are used to isolate the phase and amplitudes of the electric fields of vibrational photon echoes as a function of multiple pulse delays. Structural information is made available on the time scale of a few picoseconds. Line narrowed spectra of acyl-proline-NH2 and cross peaks implying the coupling between its amide-I modes are obtained, as are the phases of the various contributions to the signals. Solvent-sensitive structural differences are seen for the dipeptide. The methods show great promise to measure structure changes in biology on a wide range of time scales.
Resumo:
The structure of the tetrameric K+ channel from Streptomyces lividans in a lipid bilayer environment was studied by polarized attenuated total reflection Fourier transform infrared spectroscopy. The channel displays approximately 43% α-helical and 25% β-sheet content. In addition, H/D exchange experiments show that only 43% of the backbone amide protons are exchangeable with solvent. On average, the α-helices are tilted 33° normal to the membrane surface. The results are discussed in relationship to the lactose permease of Escherichia coli, a membrane transport protein.
Resumo:
Experimental evidence for proton transfer via a hydrogen-bonded network in a membrane protein is presented. Bacteriorhodopsin's proton transfer mechanism on the proton uptake pathway between Asp-96 and the Schiff base in the M-to-N transition was determined. The slowdown of this transfer by removal of the proton donor in the Asp-96-->Asn mutant can be accelerated again by addition of small weak acid anions such as azide. Fourier-transform infrared experiments show in the Asp-96-->Asn mutant a transient protonation of azide bound to the protein in the M-to-N transition and, due to the addition of azide, restoration of the IR continuum band changes as seen in wild-type bR during proton pumping. The continuum band changes indicate fast proton transfer on the uptake pathway in a hydrogen-bonded network for wild-type bR and the Asp-96-->Asn mutant with azide. Since azide is able to catalyze proton transfer steps also in several kinetically defective bR mutants and in other membrane proteins, our finding might point to a general element of proton transfer mechanisms in proteins.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references.
Resumo:
Reproduced from typewritten copy.
Resumo:
Includes bibliographies.
Resumo:
The use of gene guns in ballistically delivering DNA vaccine coated gold micro-particles to skin can potentially damage targeted cells, therefore influencing transfection efficiencies. In this paper, we assess cell death in the viable epidermis by non-invasive near infrared two-photon microscopy following micro-particle bombardment of murine skin. We show that the ballistic delivery of micro-particles to the viable epidermis can result in localised cell death. Furthermore, experimental results show the degree of cell death is dependant on the number of micro-particles delivered per unit of tissue surface area. Micro-particles densities of 0.16 +/- 0.27 (mean +/- S.D.), 1.35 +/- 0.285 and 2.72 +/- 0.47 per 1000 mu m(2) resulted in percent deaths of 3.96 +/- 5.22, 45.91 +/- 10.89, 90.52 +/- 12.28, respectively. These results suggest that optimization of transfection by genes administered with gene guns is - among other effects - a compromise of micro-particle payload and cell death. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Levels of lignin and hydroxycinnamic acid wall components in three genera of forage grasses (Lolium,Festuca and Dactylis) have been accurately predicted by Fourier-transform infrared spectroscopy using partial least squares models correlated to analytical measurements. Different models were derived that predicted the concentrations of acid detergent lignin, total hydroxycinnamic acids, total ferulate monomers plus dimers, p-coumarate and ferulate dimers in independent spectral test data from methanol extracted samples of perennial forage grass with accuracies of 92.8%, 86.5%, 86.1%, 59.7% and 84.7% respectively, and analysis of model projection scores showed that the models relied generally on spectral features that are known absorptions of these compounds. Acid detergent lignin was predicted in samples of two species of energy grass, (Phalaris arundinacea and Pancium virgatum) with an accuracy of 84.5%.
Resumo:
Two energy grass species, switch grass, a North American tuft grass, and reed canary grass, a European native, are likely to be important sources of biomass in Western Europe for the production of biorenewable energy. Matching chemical composition to conversion efficiency is a primary goal for improvement programmes and for determining the quality of biomass feed-stocks prior to use and there is a need for methods which allow cost effective characterisation of chemical composition at high rates of sample through-put. In this paper we demonstrate that nitrogen content and alkali index, parameters greatly influencing thermal conversion efficiency, can be accurately predicted in dried samples of these species grown under a range of agronomic conditions by partial least square regression of Fourier transform infrared spectra (R2 values for plots of predicted vs. measured values of 0.938 and 0.937, respectively). We also discuss the prediction of carbon and ash content in these samples and the application of infrared based predictive methods for the breeding improvement of energy grasses.
Resumo:
Fe{HB(CHN)} is observed by variable temperature infrared and magnetic studies to have a spin transition between the low spin S = 0 and high spin S = 2 states at 331 K (58 °C) with thermal hysteresis of ~1.5 K. Changes in the triazole ligand IR absorptions demonstrate that distant non-metal-ligand vibrations are altered upon the change in electronic structure associated with the spin-crossover can be used to monitor the the spin-crossover transition.
Resumo:
In this thesis, I describe studies on fabrication, spectral characteristics and applications of tilted fibre gratings (TFGs) with small, large and 45° tilted structures and novel developments in fabrication of fibre Bragg gratings (FBGs) and long period gratings (LPGs) in normal silica and mid-infrared (mid-IR) glass fibres using near-IR femtosecond laser. One of the major contributions presented in this thesis is the systematic investigation of structures, inscription methods and spectral, polarisation dependent loss (PDL) and thermal characteristics of TFGs with small (<45°), large (>45°) and 45° tilted structures. I have experimentally characterised TFGs, obtaining relationships between the radiation angle, central wavelength of the radiation profile, Bragg resonance and the tilt angle, which are consistent with theoretical simulation based on the mode-coupling theory. Furthermore, thermal responses have been measured for these three types of TFGs, showing the transmission spectra of large and 45° TFGs are insensitive to the temperature change, unlike the normal and small angle tilted FBGs. Based on the distinctive optical properties, TFGs have been developed into interrogation system and sensors, which form the other significant contributions of the work presented in this thesis. The 10°-TFG based 800nm WDM interrogation system can function not just as an in-fibre spectrum analyser but also possess refractive index sensing capability. By utilising the unique polarisation properties, the 81 °-TFG based sensors are capable of sensing the transverse loading and twisting with sensitivities of 2.04pW/(kg/m) and 145.90pW/rad, repectively. The final but the most important contribution from the research work presented in this thesis is the development of novel grating inscription techniques using near-IR femtosecond laser. A number of LPGs and FBGs were successfully fabricated in normal silica and mid-IR glass fibres using point-by-point and phase-mask techniques. LPGs and 1st and 2nd order FBGs have been fabricated in these mid-IR glass fibres showing resonances covering the wavelength range from 1200 to 1700nm with the strengths up to 13dB. In addition, the thermal and strain sensitivities of these gratings have been systematically investigated. All the results from these initial but systematic works will provide useful function characteristics information for future fibre grating based devices and applications in mid-IR range.
Resumo:
We report the first experimental measurements on the spectral modification of type IA fibre Bragg gratings, incorporated in an optical network, which result from the use of high-power, near-infrared lasers. The fibre grating properties are modified in a controlled manner by exploiting the characteristics of the inherent 1400 nm absorption band of the optical fibre, which grows in strength during the type IA grating inscription. If the fibre network is illuminated with a high-power laser, having an emission wavelength coincident with the absorption band, the type IA centre wavelength and chirp can be modified. Furthermore, partial grating erasure is demonstrated. This has serious implications when using type IA gratings in an optical network, as their spectrum can be modified using purely optical methods (no external heating source acts on the fibre), and to their long-term stability as the grating is shown to decay. Conversely, suitably stabilized gratings can be spectrally tailored, for tuning fibre lasers or edge filter modification in sensing applications, by purely optical means. © 2006 IOP Publishing Ltd.