909 resultados para nanoscale, nanotechnology, nanostructures, nanoparticles, atomic scale, fabrication, manipulation,


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective To verify the effects of exercise intensity deception by the Borg scale on the ratings of perceived exertion (RPE), heart rate (HR) and performance responses during a constant power output open-loop exercise. Methods Eight healthy men underwent a maximal incremental test on a cycle ergometer to identify the peak power output (PPO) and heart rate deflection point (HRDP). Subsequently, they performed a constant power output trial to exhaustion set at the HRDP intensity, in deception (DEC) and informed (INF) conditions: DEC-subjects were told that they would be cycling at an intensity corresponding to two categories below the RPE quantified at the HRDP; INF-subjects were told that they would cycle at the exact intensity corresponding to the RPE quantified at the HRDP. Results The PPO and power output at the HRDP obtained in maximal incremental tests were 247.5 +/- 32.1 W and 208.1 +/- 27.1 W, respectively. No significant difference in the time to exhaustion was found between DEC (525 +/- 244 s) or INF (499 +/- 224 s) trials. The slope and the first and second measurements of the RPE and HR parameters showed no significant difference between trials. Conclusions Psychophysiological variables such as RPE and HR as well as performance were not affected when exercise intensity was deceptively manipulated via RPE scores. This may suggest that unaltered RPE during exercise is a regulator of performance in this open-loop exercise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The preparation of nanometer-sized structures of zinc oxide (ZnO) from zinc acetate and urea as raw materials was performed using conventional water bath heating and a microwave hydrothermal (MH) method in an aqueous solution. The oxide formation is controlled by decomposition of the added urea in the sealed autoclave. The influence of urea and the synthesis method on the final product formation are discussed. Broadband photoluminescence (PL) behavior in visible-range spectra was observed with a maximum peak centered in the green region which was attributed to different defects and the structural changes involved with ZnO crystals which were produced during the nucleation process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polymeric nanoparticles (PLGA) have been developed for the encapsulation and controlled release of quercetin and catechin. Nanoparticles were fabricated using a solvent displacementmethod. Physicochemical properties were measured by light scattering, scanning electron microscopy and zeta-potential, X-ray diffraction, infrared spectroscopy and differential scanning calorimetry. Encapsulation efficiency and in vitro release profiles were obtained from differential pulse voltammetry experiments. Antioxidant properties of free and encapsulated flavonoids were determined by TBARS, fluorescence spectroscopy and standard chelating activity methods. Relatively small (d approximate to 400 nm) polymeric nanoparticles were obtained containing quercetin or catechin in a non-crystalline form (EE approximate to 79%) and the main interactions between the polymer and each flavonoid were found to consist of hydrogen bonds. In vitro release profiles were pH-dependant, the more acidic pH, the faster release of each flavonoid from the polymeric nanoparticles. The inhibition of the action of free radicals and chelating properties, were also enhanced when quercetin and catechin were encapsulated within PLGA nanoparticles. The information obtained from this study will facilitate the design and fabrication of polymeric nanoparticles as possible oral delivery systems for encapsulation, protection and controlled release of flavonoids aimed to prevent oxidative stress in human body or food products.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magnetic and catalytic gold nanoparticles were electrodeposited through potential pulse on dendrimer-carbon nanotube layer-by-layer (LbL) films. A plasmon absorption band at about 550 nm revealed the presence of nanoscale gold in the film. The location of the Au nanoparticles in the film was clearly observed by selecting the magnetic force microscopy mode. To our knowledge, this is the first report on the electrochemical synthesis of magnetic Au nanoparticles. In addition to the magnetic properties, the Au nanoparticles also exhibited high catalytic activity towards ethanol and glycerol oxidation in alkaline medium.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanoplasmonics and metamaterials sciences are rapidly growing due to their contributions to photonic devices fabrication with applications ranging from biomedicine to photovoltaic cells. Noble metal nanoparticles incorporated into polymer matrix have great potential for such applications due to their distinctive optical properties. However, methods to indirectly incorporate metal nanoparticles into polymeric microstructures are still on demand. Here we report on the fabrication of two-photon polymerized microstructures doped with gold nanoparticles through an indirect doping process, so they do not interfere in the two-photon polymerization (2PP) process. Such microstructures present a strong emission, arising from gold nanoparticles fluorescence. The microstructures produced are potential candidates for nanoplasmonics and metamaterials devices applications and the nanoparticles production method can be applied in many samples, heated simultaneously, opening the possibility for large scale processes. (C) 2012 Optical Society of America

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ZnO and doped M:ZnO (M = V, Fe and Co) nanostructures were synthesized by microwave hydrothermal synthesis using a low temperature route without addition of any surfactant. The transition metal ions were successfully doped in small amount (3% mol) into ZnO structure. Analysis by X-ray diffraction reveals the formation of ZnO with the hexagonal (wurtzite-type) crystal structure for all the samples. The as-obtained samples showed a similar flower-like morphology except for Fe:ZnO samples, which presented a plate-like morphology. The photocatalytic performance for Rhodamine B (RhB) degradation confirmed that the photoactivity of M:ZnO nanostructures decreased for all dopants in structure, according to their eletronegativity. Photoluminescence spectroscopy was employed to correlate M:ZnO structure with its photocatalytical properties. It was suggested that transition metal ions in ZnO lattice introduce defects that act as trapping or recombination centers for photogenerated electrons and holes, making it impossible for them reach the surface and promote the photocatalytical process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR). Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated parameters and expected theoretical predictions. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi. org/10.1063/1.4739533]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the field of organic thin films, manipulation at the nanoscale can be obtained by immobilization of different materials on platforms designed to enhance a specific property via the layer-by-layer technique. In this paper we describe the fabrication of nanostructured films containing cobalt tetrasulfonated phthalocyanine (CoTsPc) obtained through the layer-by-layer architecture and assembled with linear poly(allylamine hydrochloride) (PAH) and poly(amidoamine) dendrimer (PAMAM) polyelectrolytes. Film growth was monitored by UV-vis spectroscopy following the Q band of CoTsPc and revealed a linear growth for both systems. Fourier transform infrared (FTIR) spectroscopy showed that the driving force keeping the structure of the films was achieved upon interactions of CoTsPc sulfonic groups with protonated amine groups present in the positive polyelectrolyte. A comprehensive SPR investigation on film growth reproduced the deposition process dynamically and provided an estimation of the thicknesses of the layers. Both FTIR and SPR techniques suggested a preferential orientation of the Pc ring parallel to the substrate. The electrical conductivity of the PAH films deposited on interdigitated electrodes was found to be very sensitive to water vapor. These results point to the development of a phthalocyanine-based humidity sensor obtained from a simple thin film deposition technique, whose ability to tailor molecular organization was crucial to achieve high sensitivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe the preparation of platinum nanoparticles (PtNPs) using the 3-n-propylpyridinium silsesquioxane chloride (SiPy+Cl-) as a nanoreactor and stabilizer. The formation of PtNPs was monitored by UV-Vis spectroscopy by measuring the decrease in the intensity of the band at 375 nm, which is attributed to the electronic absorption of PtCl62- ions. TEM images of Pt-SiPy+Cl- nanohybrid indicated an average size of 3-40 nm for PtNPs. The Pt-SiPy+Cl- was used as a polycation in the preparation of layer-by-layer films (LbL) on a glass substrate coated with fluorine-doped tin oxide (FTO) alternating with the polyanion poly(vinyl sulfonic acid) (PVS). The films were electrochemically tested in sulfuric acid to confirm the deposition of Pt-SiPy+Cl- onto the LbL films, observing the adsorption and desorption of hydrogen (E-pa = 0.1 V) and by the redox process of formation for PtO with E-pa = 1.3 V and E-pc = 0.65 V. FTIR and Raman spectra confirmed the presence of the PVS and Pt-SiPy+Cl- in the LbL films. A linear increase in the absorbance in the UV-Vis spectra of the Pt-SiPy+Cl- at 258 nm (pi -> pi* transition of the pyridine groups) with a number of Pt-SiPy+Cl-/PVS or PVS/SiPy+Cl- bilayers (R = 0.992) was observed. These LbL films were tested for the determination of dopamine (DA) in the presence of ascorbic acid (AA) with a detection limit (DL) on the order of 2.6 x 10(-6) mol L-1 and a quantification limit (QL) of 8.6 x 10(-6) mol L-1. The films exhibited a good repeatability and reproducibility, providing a potential difference of 550 mV for the oxidation of DA with AA interferent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present paper, we report on the molecular interaction and photochemistry of TiO2 nanoparticles (NPs) and cytochrome c systems for understanding the effects of supramolecular organization and electron transfer by using two TiO2 structures: P25 TiO2 NPs and titanate nanotubes. The adsorption and reduction of cytochrome c heme iron promoted by photo-excited TiO2, arranged as P25 TiO2 NPs and as nanotubes, were characterized using electronic absorption spectroscopy, thermogravimetric analysis, and atomic force microscopy. In an aqueous buffered suspension (pH 8.0), the mass of cytochrome c adsorbed on the P25 TiO2 NP surface was 2.3 fold lower (0.75 mu g m(-2)) than that adsorbed on the titanate nanotubes (1.75 mu g m(-2)). Probably due to the high coverage of titanate nanotubes by adsorbed cytochrome c, the low amount of soluble remaining protein was not as efficiently photo-reduced by this nanostructure as it was by the P25 TiO2 NPs. Cytochrome c, which desorbed from both titanium materials, did not exhibit changes in its redox properties. In the presence of the TiO2 NPs, the photo-induced electron transfer from water to soluble cytochrome c heme iron was corroborated by the following findings: (i) identification by EPR of the hydroxyl radical production during the irradiation of an aqueous suspension of TiO2 NPs, (ii) impairment of a cytochrome c reduction by photo-excited TiO2 in the presence of dioxane, which affects the dielectric constant of the water, and (iii) change in the rate of TiO2-promoted cytochrome c reduction when water was replaced with D2O. The TiO2-promoted photo-reduction of cytochrome c was reverted by peroxides. Cytochrome c incorporated in the titanate nanotubes was also reversibly reduced under irradiation, as confirmed by EPR and UV-visible spectroscopy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The common thread of this thesis is the will of investigating properties and behavior of assemblies. Groups of objects display peculiar properties, which can be very far from the simple sum of respective components’ properties. This is truer, the smaller is inter-objects distance, i.e. the higher is their density, and the smaller is the container size. “Confinement” is in fact a key concept in many topics explored and here reported. It can be conceived as a spatial limitation, that yet gives origin to unexpected processes and phenomena based on inter-objects communication. Such phenomena eventually result in “non-linear properties”, responsible for the low predictability of large assemblies. Chapter 1 provides two insights on surface chemistry, namely (i) on a supramolecular assembly based on orthogonal forces, and (ii) on selective and sensitive fluorescent sensing in thin polymeric film. In chapters 2 to 4 confinement of molecules plays a major role. Most of the work focuses on FRET within core-shell nanoparticles, investigated both through a simulation model and through experiments. Exciting results of great applicative interest are drawn, such as a method of tuning emission wavelength at constant excitation, and a way of overcoming self-quenching processes by setting up a competitive deactivation channel. We envisage applications of these materials as labels for multiplexing analysis, and in all fields of fluorescence imaging, where brightness coupled with biocompatibility and water solubility is required. Adducts of nanoparticles and molecular photoswitches are investigated in the context of superresolution techniques for fluorescence microscopy. In chapter 5 a method is proposed to prepare a library of functionalized Pluronic F127, which gives access to a twofold “smart” nanomaterial, namely both (i)luminescent and (ii)surface-functionalized SCSSNPs. Focus shifts in chapter 6 to confinement effects in an upper size scale. Moving from nanometers to micrometers, we investigate the interplay between microparticles flowing in microchannels where a constriction affects at very long ranges structure and dynamics of the colloidal paste.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the scenario of depleting fossil fuels, finding new energy technologies and conserving conventional energy resources have become essential to sustain modern civilization. While renewable energies are on the rise, considerable interest has been turned also to reduce energy consumption of conventional devices and appliances, which are often not yet optimized for this purpose. Modern nanotechnology provides a platform to build such devices by using nanomaterials showing exceptional physico-chemical properties. In particular, carbon materials (fullerenes, carbon nanotubes, graphene etc.), which show high thermal and electrical conductivity, aspect ratio, shear strength and chemical/mechanical resistance, are quite promising for a wide range of applications. However, the problem of solubility often hampers their handling and industrial utilization. These limitations can be mitigated by functionalizing carbon nanostructures, either covalently or non covalently, with organic or inorganic compounds. The exo- and endohedral functionalization of carbon nanotubes (CNTs) with organic/inorganic moieties to produce luminescent materials with desired properties are the main focus of this doctoral work. These hybrids have been thoroughly designed and characterized with chemical, microscopic and photophysical analyses. All the materials based on carbon nanostructures described in this thesis are innovative examples of photoactive and luminescent hybrids, and their morphological and photophysical properties help understanding the nature of interactions between the active units. This may prompt the design and fabrication of new functional materials for applications in the fields of optoelectronics and photovoltaics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon has a unique ability to shape networks of differently hybridized atoms that can generate various allotropes and may also exist as nanoscale materials. The emergence of carbon nanostructures initially occured through the serendipitous discovery of fullerenes and then through experimental advances which led to carbon nanotubes, nanohorns and graphene. The structural diversity of carbon nanoscopic allotropes and their unique and unprecedentend properties, give rise to countless applications and have been intensively exploited in nanotechnology, since they may address the need to create smarter optoelectronic devices, smaller in size and with better performance. The versatile properties of carbon nanomaterials are reflected in the multidisciplinary character of my doctoral research where, in particular, I take advantage of the opportunities offered by fullerenes and carbon nanotubes in constructing novel functional materials. In this work, carbon nanostructures are incorporated in novel photoactive functional systems constructed through different types of interactions – covalent bonds, ion-pairing or self-assembly. The variety of properties exhibited by carbon nanostructures is successfully explored by assigning them a different role in a specific array: fullerenes are employed as electron or energy acceptors, whereas carbon nanotubes behave like optically inert scaffolds for luminescent materials or nanoscale substrates in sonication-induced self-assembly. All the presented systems serve as a testbed for exploring the properties of carbon nanostructures in multicomponent arrays, which may be advantageous for the production of new photovoltaic or optoelectronic devices, as well as in the design and control of self-assembly processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the field of organic optoelectronics, the nanoscale structure of the materials has huge im-pact on the device performance. Here, scanning force microscopy (SFM) techniques become increasingly important. In addition to topographic information, various surface properties can be recorded on a nanometer length scale, such as electrical conductivity (conductive scanning force microscopy, C-SFM) and surface potential (Kelvin probe force microscopy, KPFM).rnrnIn the context of this work, the electrical SFM modes were applied to study the interplay be-tween morphology and electrical properties in hybrid optoelectronic structures, developed in the group of Prof. J. Gutmann (MPI-P Mainz). In particular, I investigated the working prin-ciple of a novel integrated electron blocking layer system. A structure of electrically conduct-ing pathways along crystalline TiO2 particles in an insulating matrix of a polymer derived ceramic was found and insulating defect structures could be identified. In order to get insights into the internal structure of a device I investigated a working hybrid solar cell by preparing a cross cut with focused ion beam polishing. With C-SFM, the functional layers could be identified and the charge transport properties of the novel active layer composite material could be studied. rnrnIn C-SFM, soft surfaces can be permanently damaged by (i) tip induced forces, (ii) high elec-tric fields and (iii) high current densities close to the SFM-tip. Thus, an alternative operation based on torsion mode topography imaging in combination with current mapping was intro-duced. In torsion mode, the SFM-tip vibrates laterally and in close proximity to the sample surface. Thus, an electrical contact between tip and sample can be established. In a series of reference experiments on standard surfaces, the working mechanism of scanning conductive torsion mode microscopy (SCTMM) was investigated. Moreover, I studied samples covered with free standing semiconducting polymer nano-pillars that were developed in the group of Dr. P. Theato (University Mainz). The application of SCTMM allowed non-destructive imag-ing of the flexible surface at high resolution while measuring the conductance on individual pillarsrnrnIn order to study light induced electrical effects on the level of single nanostructures, a new SFM setup was built. It is equipped with a laser sample illumination and placed in inert at-mosphere. With this photoelectric SFM, I investigated the light induced response in function-alized nanorods that were developed in the group of Prof. R. Zentel (University Mainz). A block-copolymer containing an anchor block and dye moiety and a semiconducting conju-gated polymer moiety was synthesized and covalently bound to ZnO nanorods. This system forms an electron donor/acceptor interface and can thus be seen as a model system of a solar cell on the nanoscale. With a KPFM study on the illuminated samples, the light induced charge separation between the nanorod and the polymeric corona could not only be visualized, but also quantified.rnrnThe results demonstrate that electrical scanning force microscopy can study fundamental processes in nanostructures and give invaluable feedback to the synthetic chemists for the optimization of functional nanomaterials.rn

Relevância:

40.00% 40.00%

Publicador:

Resumo:

CdTe and Cu(In,Ga)Se2 (CIGS) thin film solar cells are fabricated, electrically characterized and modelled in this thesis. We start from the fabrication of CdTe thin film devices where the R.F. magnetron sputtering system is used to deposit the CdS/CdTe based solar cells. The chlorine post-growth treatment is modified in order to uniformly cover the cell surface and reduce the probability of pinholes and shunting pathways creation which, in turn, reduces the series resistance. The deionized water etching is proposed, for the first time, as the simplest solution to optimize the effect of shunt resistance, stability and metal-semiconductor inter-diffusion at the back contact. In continue, oxygen incorporation is proposed while CdTe layer deposition. This technique has been rarely examined through R.F sputtering deposition of such devices. The above experiments are characterized electrically and optically by current-voltage characterization, scanning electron microscopy, x-ray diffraction and optical spectroscopy. Furthermore, for the first time, the degradation rate of CdTe devices over time is numerically simulated through AMPS and SCAPS simulators. It is proposed that the instability of electrical parameters is coupled with the material properties and external stresses (bias, temperature and illumination). Then, CIGS materials are simulated and characterized by several techniques such as surface photovoltage spectroscopy is used (as a novel idea) to extract the band gap of graded band gap CIGS layers, surface or bulk defect states. The surface roughness is scanned by atomic force microscopy on nanometre scale to obtain the surface topography of the film. The modified equivalent circuits are proposed and the band gap graded profiles are simulated by AMPS simulator and several graded profiles are examined in order to optimize their thickness, grading strength and electrical parameters. Furthermore, the transport mechanisms and Auger generation phenomenon are modelled in CIGS devices.