805 resultados para muscle fiber type
Resumo:
The cavotricuspid isthmus (CTI) in the lower pan of the right atrium, between the inferior caval vein and the tricuspid valve, is considered crucial in producing a conduction delay and. hence, favoring the perpetuation of a reentrant circuit. Non-uniform wall thickness, muscle fiber orientation and the marked variability in muscular architecture in the CTI should be taken into consideration from the perspective of anisotropic conduction, thus producing an electrophysiologic isthmus. The purpose of this article is to review the anatomy and electrophysiology of the CTI in human hearts to provide useful information to plan CTI radio frequency ablation for the patients with atrial flutter.
Resumo:
Purpose: To analyze the repeatability of measuring nerve fiber length (NFL) from images of the human corneal subbasal nerve plexus using semiautomated software. Methods: Images were captured from the corneas of 50 subjects with type 2 diabetes mellitus who showed varying severity of neuropathy, using the Heidelberg Retina Tomograph 3 with Rostock Corneal Module. Semiautomated nerve analysis software was independently used by two observers to determine NFL from images of the subbasal nerve plexus. This procedure was undertaken on two occasions, 3 days apart. Results: The intraclass correlation coefficient values were 0.95 (95% confidence intervals: 0.92–0.97) for individual subjects and 0.95 (95% confidence intervals: 0.74–1.00) for observer. Bland-Altman plots of the NFL values indicated a reduced spread of data with lower NFL values. The overall spread of data was less for (a) the observer who was more experienced at analyzing nerve fiber images and (b) the second measurement occasion. Conclusions: Semiautomated measurement of NFL in the subbasal nerve fiber layer is highly repeatable. Repeatability can be enhanced by using more experienced observers. It may be possible to markedly improve repeatability when measuring this anatomic structure using fully automated image analysis software.
Resumo:
Strain and temperature sensitivities of a type I Bragg grating inscribed in a germania doped silica fiber, fabricated under normal conditions and zero strain, are compared with that of a Bragg grating inscribed under pre-strained condition. The results obtained reveal that the strain and temperature sensitivities of the two gratings are different. Based on these results, we demonstrate a technique which enables discrimination of strain and temperature in a Fiber Bragg Grating (FBG) with a linear response. The present technique allows for an easy implementation of the sensor by providing a direct access to the grating region in the fiber and demands only a simple interrogation system.
Resumo:
A commercial acrylic fiber with 92% (w/w) acrylonitrile content was partially hydrolyzed converting a fraction of the nitrile (-CN) groups to carboxylic acid (-COOH) groups, to coat the fiber with polyethylenimine (PEI) resin, which was then crosslinked with glutaraldehyde and further quaternized with ethyl chloroacetate to produce a novel strong-base anionic exchanger in the form of fiber. Designated as PAN(QPEI.XG)(Cl-), the fibrous sorbent was compared with a commercial bead-form resin Amberlite IRA-458(Cl-) in respect of sorption capacity, selectivity, and kinetics for removal of silver thiosulfate complexes from aqueous solutions. Though the saturation level of [Ag(S2O3)(2)](3-) on PAN(QPEI.XG)(Cl-) is considerably less than that on IRA-458(Cl-), the gel-coated fibrous sorbent exhibits, as compared to the bead-form sorbent, a significantly higher sorption selectivity for the silver thiosulfate complex in the presence of excess of other anions Such as S2O32-, SO42-, and Cl-, and a remarkably faster rate of both sorption and stripping. The initial uptake of the sorbate by the fibrous sorbent is nearly instantaneous, reaching up to similar to 80% of the saturation capacity within 10 s, as compared to only similar to 12% on the bead-form sorbent. The high initial rate of uptake fits a shell-core kinetic model for sorption on fiber of cylindrical geometry. With 4M HCl, the stripping of the sorbed silver complex from the fibrous sorbent is clean and nearly instantaneous, while, in contrast, a much slower rate of stripping on the bead-form sorbent leads to its fouling due to a slow decomposition of the silver thiosulfate complex in the acidic medium.
Resumo:
BACKGROUND: Development of hip adductor, tensor fascia lata, and rectus femoris muscle contractures following total hip arthroplasties are quite common, with some patients failing to improve despite treatment with a variety of non-operative modalities. The purpose of the present study was to describe the use of and patient outcomes of botulinum toxin injections as an adjunctive treatment for muscle tightness following total hip arthroplasty. METHODS: Ten patients (14 hips) who had hip adductor, abductor, and/or flexor muscle contractures following total arthroplasty and had been refractory to physical therapeutic efforts were treated with injection of botulinum toxin A. Eight limbs received injections into the adductor muscle, 8 limbs received injections into the tensor fascia lata muscle, and 2 limbs received injection into the rectus femoris muscle, followed by intensive physical therapy for 6 weeks. RESULTS: At a mean final follow-up of 20 months, all 14 hips had increased range in the affected arc of motion, with a mean improvement of 23 degrees (range, 10 to 45 degrees). Additionally all hips had an improvement in hip scores, with a significant increase in mean score from 74 points (range, 57 to 91 points) prior to injection to a mean of 96 points (range, 93 to 98) at final follow-up. There were no serious treatment-related adverse events. CONCLUSION: Botulinum toxin A injections combined with intensive physical therapy may be considered as a potential treatment modality, especially in difficult cases of muscle tightness that are refractory to standard therapy.
Resumo:
Little is known about the molecular characteristics of the voltage-activated K(+) (K(v)) channels that underlie the A-type K(+) current in vascular smooth muscle cells of the systemic circulation. We investigated the molecular identity of the A-type K(+) current in retinal arteriolar myocytes using patch-clamp techniques, RT-PCR, immunohistochemistry, and neutralizing antibody studies. The A-type K(+) current was resistant to the actions of specific inhibitors for K(v)3 and K(v)4 channels but was blocked by the K(v)1 antagonist correolide. No effects were observed with pharmacological agents against K(v)1.1/2/3/6 and 7 channels, but the current was partially blocked by riluzole, a K(v)1.4 and K(v)1.5 inhibitor. The current was not altered by the removal of extracellular K(+) but was abolished by flecainide, indicative of K(v)1.5 rather than K(v)1.4 channels. Transcripts encoding K(v)1.5 and not K(v)1.4 were identified in freshly isolated retinal arterioles. Immunofluorescence labeling confirmed a lack of K(v)1.4 expression and revealed K(v)1.5 to be localized to the plasma membrane of the arteriolar smooth muscle cells. Anti-K(v)1.5 antibody applied intracellularly inhibited the A-type K(+) current, whereas anti-K(v)1.4 antibody had no effect. Co-expression of K(v)1.5 with K(v)beta1 or K(v)beta3 accessory subunits is known to transform K(v)1.5 currents from delayed rectifers into A-type currents. K(v)beta1 mRNA expression was detected in retinal arterioles, but K(v)beta3 was not observed. K(v)beta1 immunofluorescence was detected on the plasma membrane of retinal arteriolar myocytes. The findings of this study suggest that K(v)1.5, most likely co-assembled with K(v)beta1 subunits, comprises a major component underlying the A-type K(+) current in retinal arteriolar smooth muscle cells
Resumo:
This study assessed the contribution of L-type Ca2+ channels and other Ca2+ entry pathways to Ca2+ store refilling in choroidal arteriolar smooth muscle. Voltage-clamp recordings were made from enzymatically isolated choroidal microvascular smooth muscle cells and from cells within vessel fragments (containing <10 cells) using the whole-cell perforated patch-clamp technique. Cell Ca2+ was estimated by fura-2 microfluorimetry. After Ca2+ store depletion with caffeine (10 mM), refilling was slower in cells held at -20 mV compared to -80 mV (refilling half-time was 38 +/- 10 and 20 +/- 6 s, respectively). To attempt faster refilling via L-type Ca2+ channels, depolarising steps from -60 to -20 mV were applied during a 30 s refilling period following caffeine depletion. Each step activated L-type Ca2+ currents and [Ca2+]i transients, but failed to accelerate refilling. At -80 mV and in 20 mM TEA, prolonged caffeine exposure produced a transient Ca2+-activated Cl- current (I(Cl)(Ca)) followed by a smaller sustained current. The sustained current was resistant to anthracene-9-carboxylic acid (1 mM; an I(Cl)(Ca) blocker) and to BAPTA AM, but was abolished by 1 microM nifedipine. This nifedipine-sensitive current reversed at +29 +/- 2 mV, which shifted to +7 +/- 5 mV in Ca2+-free solution. Cyclopiazonic acid (20 microM; an inhibitor of sarcoplasmic reticulum Ca2+-ATPase) also activated the nifedipine-sensitive sustained current. At -80 mV, a 5 s caffeine exposure emptied Ca2+ stores and elicited a transient I(Cl)(Ca). After 80 s refilling, another caffeine challenge produced a similar inward current. Nifedipine (1 microM) during refilling reduced the caffeine-activated I(Cl)(Ca) by 38 +/- 5 %. The effect was concentration dependent (1-3000 nM, EC50 64 nM). In Ca2+-free solution, store refilling was similarly depressed (by 46 +/- 6 %). Endothelin-1 (10 nM) applied at -80 mV increased [Ca2+]i, which subsided to a sustained 198 +/- 28 nM above basal. Cell Ca2+ was then lowered by 1 microM nifedipine (to 135 +/- 22 nM), which reversed on washout. These results show that L-type Ca2+ channels fail to contribute to Ca2+ store refilling in choroidal arteriolar smooth muscle. Instead, they refill via a novel non-selective store-operated cation conductance that is blocked by nifedipine.
T- and L-type Ca2+ currents in freshly dispersed smooth muscle cells from the human proximal urethra
Resumo:
The purpose of the present study was to characterise Ca2+ currents in smooth muscle cells isolated from biopsy samples taken from the proximal urethra of patients undergoing surgery for bladder or prostate cancer. Cells were studied at 37 degreesC using the amphotericin B perforated-patch configuration of the patch-clamp technique. Currents were recorded using Cs+-rich pipette solutions to block K+ currents. Two components of current, with electrophysiological and pharmacological properties typical of T- and L-type Ca2+ currents, were present in these cells. When steady-state inactivation curves for the L current were fitted with a Boltzmann equation, this yielded a V-1/2 of -45 +/- 5 mV. In contrast, the T current inactivated with a V-1/2 of -80 +/- 3 mV. The L currents were reduced in a concentration-dependent manner by nifedipine (ED50 = 159 +/- 54 nm) and Ni2+ (ED50 = 65 +/- 16 muM) but were enhanced when external Ca2+ was substituted with Ba2+. The T current was little affected by TTX, reduction in external Na+, application of nifedipine at concentrations below 300 nm or substitution of external Ca2+ with Ba2+, but was reduced by Ni2+ with an ED50 of 6 +/- 1 mum. When cells were stepped from -100 to -30 mV in Ca2+-free conditions, small inward currents could be detected. These were enhanced 40-fold in divalent-cation-free solution and blocked in a concentration-dependent manner by Mg2+ with an ED50 of 32 +/- 16 mum. These data support the idea that human urethral myocytes possess currents with electrophysiological and pharmacological properties typical of T- and L-type Ca2+ currents.
Resumo:
Aim: to evaluate the effects of a 12-weeks combined aerobic-resistance exercise therapy on fatigue and isokinetic muscle strength, glycemic control and health-related quality of life (HRQoL) in moderately affected type 2 diabetes (T2DM) patients. Methods: a randomized controlled trial design was employed. Forty-three T2DM patients were assigned to an exercise group (n = 22), performing 3 weekly sessions of 60 minutes of combined aerobic-resistance exercise for 12-weeks; or a no exercise control group (n = 21). Both groups were evaluated at a baseline and after 12-weeks of exercise therapy for: 1) muscle strength and fatigue by isokinetic dynamometry; 2) plasma glycated hemoglobin A1C (HbA1C); and 3) HRQoL utilizing the SF-36 questionnaire. Results: the exercise therapy led to improvements in muscle fatigue in knee extensors (-55%) and increased muscle strength in knee flexors and extensors (+15 to +30%), while HbA1C decreased (-18%). In addition, the exercising patients showed sizeable improvements in HRQoL: physical function (+53%), vitality (+21%) and mental health (+40%). Conclusion: 12-weeks of combined aerobic-resistance exercise was highly effective to improve muscle strength and fatigue, glycemic control and several aspects of HRQoL in T2DM patients. These data encourage the use of aerobic and resistance exercise in the good clinical care of T2DM.
Resumo:
Nous avons précédemment montré que l’activation du récepteur natriurétique de type C (NPR-C) par son agoniste spécifique, le C-ANP4-23, atténue l’augmentation de la prolifération des cellules du muscle lisse vasculaire (CMLV) induite par les peptides vasoactifs (Ang II, ET-1 et l’AVP). Puisque les CMLV provenant de rats spontanément hypertendus (SHR) montrent elles aussi un taux de prolifération plus élevé que leur contrôle, les CMLV de rats Wystar-Kyoto (WKY), nous avons entrepris cette étude dans le but de déterminer si C-ANP4-23 peut également diminuer le taux élevé de prolifération des CMLV de SHR et, le cas échéant déterminer les mécanismes responsables de cette réponse. Nos résultats montrent que le taux de prolifération des CMLV de SHR est significativement plus élevé que celui des CMLV de WKY et que la présence de C-ANP4-23 diminue de manière-dose dépendante le taux de prolifération des CMLV de SHR. En plus, l’expression des protéines de la phase G1 du cycle cellulaire, la cycline D1, la kinase dépendante des cyclines 2 (cdk2) et la forme phosphorylée de la protéine du rétinoblastome (pRb) est augmentée dans les CMLV de SHR comparativement aux CMLV de WKY et est atténué par C-ANP4-23. De plus, nos résultats montrent que les inhibiteurs du complexe cycline D1/cdk4 (NSC 625987) et cdk2 (NU2058) diminue le taux de prolifération élevé des CMLV de SHR. Les CMLV de SHR montrent également un taux de phosphorylation de ERK1/2 et d’AKT et est atténué par C-ANP4-23. De plus, le taux d’expression élevé des protéines cycline D1, cdk2 et pRb des CMLV de SHR est diminué par la toxine pertussis qui inactive la protéine Giα, le PD 98095, un inhibiteur de MEK de la voie des MAPK, du wortmannin, un inhibiteur de la PI3-K et finalement du losartan, un antagoniste du récepteur AT1. Ces résultats suggèrent que l’activation du récepteur NPR-C par C-ANP4-23 diminue le taux de prolifération élevé des CMLV de SHR par une régulation à la baisse des composantes du cycle cellulaire via l’inhibition de la protéine Giα et des voies signalétique MAP kinase/PI3-K.
Resumo:
Les maladies cardio-vasculaires (MCV), telles que l’hypertension et l’athérosclérose, s’accompagnent de modifications structurales et fonctionnelles au niveau vasculaire. Un fonctionnement aberrant de la migration, l’hypertrophie et la prolifération des cellules musculaires lisses vasculaires (CMLV) sont des évènements cellulaires à l’origine de ces changements. L’endothéline-1 (ET-1) contribue à la pathogénèse des anomalies vasculaires, notamment via l’activation des protéines MAPK et PI3-K/PKB, des composantes clés impliquées dans les voies prolifératives et de croissance cellulaires. Il a été suggéré que le stress oxydant jouerait un rôle intermédiaire dans les effets pathophysiologiques vasculaires de l’ET-1. En conséquence, une modulation de la signalisation induite par l’ET-1 peut servir comme éventuelle stratégie thérapeutique contre le développement des MCV. Il apparaît de nos jours un regain d’intérêt dans l’utilisation des agents phyto-chimiques pour traiter plusieurs maladies. La curcumine, constituant essentiel de l’épice curcuma, est dotée de plusieurs propriétés biologiques parmi lesquelles des propriétés anti-oxydantes, anti-prolifératrices et cardio-protectrices. Cependant, les mécanismes moléculaires de son effet cardio-protecteur demeurent obscurs. Dans cette optique, l’objectif de cette étude a été d’examiner l’efficacité de la curcumine à inhiber la signalisation induite par l’ET-1 dans les CMLV. La curcumine a inhibé la phosphorylation des protéines IGF-1R, PKB, c-Raf et ERK1/2, induite par l’ET-1 et l’IGF-1. De plus, la curcumine a inhibé l’expression du facteur de transcription Egr-1 induite par l’ET-1 et l’IGF-1, dans les CMLV. Ces résultats suggèrent que la capacité de la curcumine à atténuer ces voies de signalisation serait un mécanisme d’action potentiel de ses effets protecteurs au niveau cardiovasculaire.
Resumo:
The aim of this work was to characterize the distribution of myofibers in the gluteus medius muscle of inactive horses of the Brasileiro de Hipismo (BH) breed at different ages by means of histochemical analyses, according to sex and depth of the biopsy. A total of 78 inactive horses (9 castrated males, 35 stallions, and 34 females) of the BH breed, aged 1 to 4 years, were used. A percutaneous muscle biopsy was obtained with a 6.0-mm Bergstrom-type needle, which allowed the removal of muscle fragments at depths of 20 and 60 mm. Myofiber types were determined based on myofibrillar adenosine triphosphatase (mATPase) and nicotinamide dinucleotide tetrazolium reductase (NADH-TR) techniques. Morphometry of the fibers was determined based on cross-sectional area (CSA), mean frequency (F), and relative cross-sectional area (RCSA). The current study demonstrated that BH horses 3 and 4 years of age show a greater percentage of, and area occupied by, type IIA fibers and lower percentage of type IIX fibers in the gluteus medius muscle compared with horses 1 and 2 years of age. No difference was found between sexes in the frequency of and area occupied by the different fiber types at any of the depths and ages studied. In this study, females showed a greater CSA for all fibers in comparison with males, at 1 year of age. The results of the current study indicate that the gluteus medius muscle of inactive BH horses shows modifications in its structural and biochemical composition during the growth of the animals, leading to a better oxidative capacity.