918 resultados para multiscale elasticity
Resumo:
International audience
Resumo:
The objective of this research is to synthesize structural composites designed with particular areas defined with custom modulus, strength and toughness values in order to improve the overall mechanical behavior of the composite. Such composites are defined and referred to as 3D-designer composites. These composites will be formed from liquid crystalline polymers and carbon nanotubes. The fabrication process is a variation of rapid prototyping process, which is a layered, additive-manufacturing approach. Composites formed using this process can be custom designed by apt modeling methods for superior performance in advanced applications. The focus of this research is on enhancement of Young's modulus in order to make the final composite stiffer. Strength and toughness of the final composite with respect to various applications is also discussed. We have taken into consideration the mechanical properties of final composite at different fiber volume content as well as at different orientations and lengths of the fibers. The orientation of the LC monomers is supposed to be carried out using electric or magnetic fields. A computer program is modeled incorporating the Mori-Tanaka modeling scheme to generate the stiffness matrix of the final composite. The final properties are then deduced from the stiffness matrix using composite micromechanics. Eshelby's tensor, required to calculate the stiffness tensor using Mori-Tanaka method, is calculated using a numerical scheme that determines the components of the Eshelby's tensor (Gavazzi and Lagoudas 1990). The numerical integration is solved using Gaussian Quadrature scheme and is worked out using MATLAB as well. . MATLAB provides a good deal of commands and algorithms that can be used efficiently to elaborate the continuum of the formula to its extents. Graphs are plotted using different combinations of results and parameters involved in finding these results
Resumo:
We present a multiscale model bridging length and time scales from molecular to continuum levels with the objective of predicting the yield behavior of amorphous glassy polyethylene (PE). Constitutive pa- rameters are obtained from molecular dynamics (MD) simulations, decreasing the requirement for ad- hoc experiments. Consequently, we achieve: (1) the identification of multisurface yield functions; (2) the high strain rate involved in MD simulations is upscaled to continuum via quasi-static simulations. Validation demonstrates that the entire multisurface yield functions can be scaled to quasi-static rates where the yield stresses are possibly predicted by a proposed scaling law; (3) a hierarchical multiscale model is constructed to predict temperature and strain rate dependent yield strength of the PE.
Resumo:
We develop an algorithm and computational implementation for simulation of problems that combine Cahn–Hilliard type diffusion with finite strain elasticity. We have in mind applications such as the electro-chemo- mechanics of lithium ion (Li-ion) batteries. We concentrate on basic computational aspects. A staggered algorithm is pro- posed for the coupled multi-field model. For the diffusion problem, the fourth order differential equation is replaced by a system of second order equations to deal with the issue of the regularity required for the approximation spaces. Low order finite elements are used for discretization in space of the involved fields (displacement, concentration, nonlocal concentration). Three (both 2D and 3D) extensively worked numerical examples show the capabilities of our approach for the representation of (i) phase separation, (ii) the effect of concentration in deformation and stress, (iii) the effect of Electronic supplementary material The online version of this article (doi:10.1007/s00466-015-1235-1) contains supplementary material, which is available to authorized users. B P. Areias pmaa@uevora.pt 1 Department of Physics, University of Évora, Colégio Luís António Verney, Rua Romão Ramalho, 59, 7002-554 Évora, Portugal 2 ICIST, Lisbon, Portugal 3 School of Engineering, Universidad de Cuenca, Av. 12 de Abril s/n. 01-01-168, Cuenca, Ecuador 4 Institute of Structural Mechanics, Bauhaus-University Weimar, Marienstraße 15, 99423 Weimar, Germany strain in concentration, and (iv) lithiation. We analyze con- vergence with respect to spatial and time discretization and found that very good results are achievable using both a stag- gered scheme and approximated strain interpolation.
Resumo:
A composite is a material made out of two or more constituents (phases) combined together in order to achieve desirable mechanical or thermal properties. Such innovative materials have been widely used in a large variety of engineering fields in the past decades. The design of a composite structure requires the resolution of a multiscale problem that involves a macroscale (i.e. the structural scale) and a microscale. The latter plays a crucial role in the determination of the material behavior at the macroscale, especially when dealing with constituents characterized by nonlinearities. For this reason, numerical tools are required in order to design composite structures by taking into account of their microstructure. These tools need to provide an accurate yet efficient solution in terms of time and memory requirements, due to the large number of internal variables of the problem. This issue is addressed by different methods that overcome this problem by reducing the number of internal variables. Within this framework, this thesis focuses on the development of a new homogenization technique named Mixed TFA (MxTFA) in order to solve the homogenization problem for nonlinear composites. This technique is based on a mixed-stress variational approach involving self-equilibrated stresses and plastic multiplier as independent variables on the Reference Volume Element (RVE). The MxTFA is developed for the case of elastoplasticity and viscoplasticity, and it is implemented into a multiscale analysis for nonlinear composites. Numerical results show the efficiency of the presented techniques, both at microscale and at macroscale level.
Resumo:
Marine biomineralizing organisms provide a fundamental link between biology and environment. Calcified structure are important archives that can provide us main means of understanding organism adaptation, habits, environmental characteristics, and to look back in time and explore the past climate and their evolutionary history. In fact, biomineralized structures retain an unparalleled record of current and past ocean conditions through the investigation of their microchemistry and isotopes. This thesis considers aspects of two different biomineralization systems: fish otolith and coral skeletons at macro-, micro- and nanoscale, with the aim to understand how their morphology, structural characteristics and compositions can provide information of their functionality, and the environmental, behavioural, and evolutionary context in which organisms are framed. To this end, I applied a multidisciplinary approach in the scope to investigate calcified structures as “information recorders” and as models to study the phenotypic plasticity.
Resumo:
Cancer is a challenging disease that involves multiple types of biological interactions in different time and space scales. Often computational modelling has been facing problems that, in the current technology level, is impracticable to represent in a single space-time continuum. To handle this sort of problems, complex orchestrations of multiscale models is frequently done. PRIMAGE is a large EU project that aims to support personalized childhood cancer diagnosis and prognosis. The goal is to do so predicting the growth of the solid tumour using multiscale in-silico technologies. The project proposes an open cloud-based platform to support decision making in the clinical management of paediatric cancers. The orchestration of predictive models is in general complex and would require a software framework that support and facilitate such task. The present work, proposes the development of an updated framework, referred herein as the VPH-HFv3, as a part of the PRIMAGE project. This framework, a complete re-writing with respect to the previous versions, aims to orchestrate several models, which are in concurrent development, using an architecture as simple as possible, easy to maintain and with high reusability. This sort of problem generally requires unfeasible execution times. To overcome this problem was developed a strategy of particularisation, which maps the upper-scale model results into a smaller number and homogenisation which does the inverse way and analysed the accuracy of this approach.
Resumo:
Rhodamine B (RB) has been successfully exploited in the synthesis of light harvesting systems, but since RB is prone to form dimers acting as quenchers for the fluorescence, high energy transfer efficiencies can be reached only when using bulky and hydrophobic counterions acting as spacers between RBs. In this PhD thesis, a multiscale theoretical study aimed at providing insights into the structural, photophysical and optical properties of RB and its aggregates is presented. At the macroscopic level (no atomistic details) a phenomenological model describing the fluorescence decay of RB networks in presence of both quenching from dimers and exciton-exciton annihiliation is presented and analysed, showing that the quenching from dimers affects the decay only at long times, a feature that can be exploited in global fitting analysis to determine relevant chemical and photophysical information. At the mesoscopic level (atomistic details but no electronic structure) the RB aggregation in water in presence of different counterions is studied with molecular dynamics (MD) simulations. A new force field has been parametrized for describing the RB flexibility and the RB-RB interaction driving the dimerization. Simulations correctly predict the RB/counterion aggregation only in presence of bulky and hydrophobic counterion and its ability to prevent the dimerization. Finally, at the microscopic level, DFT calculations are performed to demonstrate the spacing action of bulky counterions, but standard TDDFT calculations are showed to fail in correctly describing the excited states of RB and its dimers. Moreover, also standard procedures proposed in literature for obtaining ad hoc functionals are showed to not work properly. A detailed analysis on the effect of the exact exchange shows that its short-range contribution is the crucial quantity for ameliorating results, and a new functional containing a proper amount of such an exchange is proposed and successfully tested.
Resumo:
With a huge amount of printed documents nowadays, identifying their source is useful for criminal investigations and also to authenticate digital copies of a document. In this paper, we propose novel techniques for laser printer attribution. Our solutions do not need very high resolution scanning of the investigated document and explore the multidirectional, multiscale and low-level gradient texture patterns yielded by printing devices. The main contributions of this work are: (1) the description of printed areas using multidirectional and multiscale co-occurring texture patterns; (2) description of texture on low-level gradient areas by a convolution texture gradient filter that emphasizes textures in specific transition areas and (3) the analysis of printer patterns in segments of interest, which we call frames, instead of whole documents or only printed letters. We show by experiments in a well documented dataset that the proposed methods outperform techniques described in the literature and present near-perfect classification accuracy being very promising for deployment in real-world forensic investigations.
Resumo:
Chronic pain has been often associated with myofascial pain syndrome (MPS), which is determined by myofascial trigger points (MTrP). New features have been tested for MTrP diagnosis. The aim of this study was to evaluate two-dimensional ultrasonography (2D US) and ultrasound elastography (UE) images and elastograms of upper trapezius MTrP during electroacupuncture (EA) and acupuncture (AC) treatment. 24 women participated, aged between 20 and 40 years (M ± SD = 27.33 ± 5.05) with a body mass index ranging from 18.03 to 27.59 kg/m2 (22.59 ± 3.11), a regular menstrual cycle, at least one active MTrP at both right (RTPz) and left trapezius (LTPz) and local or referred pain for up to six months. Subjects were randomized into EA and AC treatment groups and the control sham AC (SHAM) group. Intensity of pain was assessed by visual analogue scale; MTrP mean area and strain ratio (SR) by 2D US and UE. A significant decrease of intensity in general, RTPz, and LTPz pain was observed in the EA group (p = 0.027; p < 0.001; p = 0.005, respectively) and in general pain in the AC group (p < 0.001). Decreased MTrP area in RTPz and LTPz were observed in AC (p < 0.001) and EA groups (RTPz, p = 0.003; LTPz, p = 0.005). Post-treatment SR in RTPz and LTPz was lower than pre-treatment in both treatment groups. 2D US and UE effectively characterized MTrP and surrounding tissue, pointing to the possibility of objective confirmation of subjective EA and AC treatment effects.
Resumo:
Cardboard packing for horticultural products has as main function to protect them. The design of a cardboard packing request the knowledge of the bending stiffens which is depending on the modulus of elasticity. The objective of this work was to calculate the cardboard modulus of elasticity from data obtained in laboratory using physical characterization test, with different methods, and comparing the results with the values obtained experimentally. Ten samples of each cardboard selected for this study were tested in the paper fabrication direction and in its transverse direction. The papers liner and medium resistance to the traction, used to calculate the bending stiffness, was determined in a universal machine test. To obtaining of the bending stiffens the four points test was accomplished. Expressive variations among the methods from which the modulus of elasticity is obtained were observed and that influence the bending stiffness of the structure. The stiffness values obtained experimentally were always greater than the values obtained from analytical method. This difference can be attributed to two factors, the production processes that assurance a larger rigidity than the components separately and the addition of the adhesive layer that is not taken in consideration in the analytic calculations.
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
OBJECTIVES: The complexity and heterogeneity of human bone, as well as ethical issues, frequently hinder the development of clinical trials. The purpose of this in vitro study was to determine the modulus of elasticity of a polyurethane isotropic experimental model via tension tests, comparing the results to those reported in the literature for mandibular bone, in order to validate the use of such a model in lieu of mandibular bone in biomechanical studies. MATERIAL AND METHODS: Forty-five polyurethane test specimens were divided into 3 groups of 15 specimens each, according to the ratio (A/B) of polyurethane reagents (PU-1: 1/0.5, PU-2: 1/1, PU-3: 1/1.5). RESULTS: Tension tests were performed in each experimental group and the modulus of elasticity values found were 192.98 MPa (SD=57.20) for PU-1, 347.90 MPa (SD=109.54) for PU-2 and 304.64 MPa (SD=25.48) for PU-3. CONCLUSION: The concentration of choice for building the experimental model was 1/1.
Resumo:
OBJECTIVES: The complexity and heterogeneity of human bone, as well as ethical issues, most always hinder the performance of clinical trials. Thus, in vitro studies become an important source of information for the understanding of biomechanical events on implant-supported prostheses, although study results cannot be considered reliable unless validation studies are conducted. The purpose of this work was to validate an artificial experimental model based on its modulus of elasticity, to simulate the performance of human bone in vivo in biomechanical studies of implant-supported prostheses. MATERIAL AND METHODS: In this study, fast-curing polyurethane (F16 polyurethane, Axson) was used to build 40 specimens that were divided into five groups. The following reagent ratios (part A/part B) were used: Group A (0.5/1.0), Group B (0.8/1.0), Group C (1.0/1.0), Group D (1.2/1.0), and Group E (1.5/1.0). A universal testing machine (Kratos model K - 2000 MP) was used to measure modulus of elasticity values by compression. RESULTS: Mean modulus of elasticity values were: Group A - 389.72 MPa, Group B - 529.19 MPa, Group C - 571.11 MPa, Group D - 470.35 MPa, Group E - 437.36 MPa. CONCLUSION: The best mechanical characteristics and modulus of elasticity value comparable to that of human trabecular bone were obtained when A/B ratio was 1:1.
Resumo:
Fluorinated denture base acrylic resins can present more stable physical properties when compared with conventional polymers. This study evaluated the incorporation of a fluoroalkyl methacrylate (FMA) mixture in a denture base material and its effect on roughness and flexural strength. A swelling behavior assessment of acrylic resin specimens (n=3, per substance) after 12 h of FMA or methyl methacrylate (MMA) immersion was conducted to determine the solvent properties. Rectangular specimens (n=30) were allocated to three groups, according to the concentration of FMA substituted into the monomer component of a heat-polymerized acrylic resin (Lucitone 550), as follows: 0% (control), 10% and 20% (v/v). Acrylic resin mixed with concentrations of 25% or more did not reach the dough stage and was not viable. The surface roughness and flexural strength of the specimens were tested. Variables were analyzed by ANOVA and Tukey's test (a=0.05). Immersion in FMA produced negligible swelling, and MMA produced obvious swelling and dissolution of the specimens. Surface roughness at concentrations of 0%, 10% and 20% were: 0.25 ± 0.04, 0.24 ± 0.04, 0.22 ± 0.03 mm (F=1.78; p=0.189, not significant). Significant differences were found for flexural strength (F=15.92; p<0.001) and modulus of elasticity (F=7.67; p=0.002), with the following results: 96 ± 6, 82 ± 5, 84 ± 6 MPa, and 2,717 ± 79, 2,558 ± 128, 2574 ± 87 MPa, respectively. The solvent properties of FMA against acrylic resin are weak, which would explain why concentrations over 20% were not viable. Surface changes were not detected after the incorporation of FMA in the denture base acrylic resin tested. The addition of FMA into denture base resin may lower the flexural strength and modulus of elasticity, regardless of the tested concentration.