853 resultados para multiple table factor analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To analyze the factors associated with stiffness of the great arteries in prepubertal children.METHODS This study with convenience sample of 231 schoolchildren aged 9-10 years enrolled in public and private schools in Vitória, ES, Southeastern Brazil, in 2010-2011. Anthropometric and hemodynamic data, blood pressure, and pulse wave velocity in the carotid-femoral segment were obtained. Data on current and previous health conditions were obtained by questionnaire and notes on the child’s health card. Multiple linear regression was applied to identify the partial and total contribution of the factors in determining the pulse wave velocity values.RESULTS Among the students, 50.2% were female and 55.4% were 10 years old. Among those classified in the last tertile of pulse wave velocity, 60.0% were overweight, with higher mean blood pressure, waist circumference, and waist-to-height ratio. Birth weight was not associated with pulse wave velocity. After multiple linear regression analysis, body mass index (BMI) and diastolic blood pressure remained in the model.CONCLUSIONS BMI was the most important factor in determining arterial stiffness in children aged 9-10 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the role that decision analysis plays in helping engineers to gain a greater understanding of the problems they face. The need of structured decision analysis is highlighted as well as the use of multiple criteria decision analysis to tackle sustainability issues with emphasis in the use of MACBETH approach. Some insights from a Portuguese Summer Course on engineering for sustainable development are presented namely the students 'and teacher perceptions about the module of decision analysis for sustainability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION AND AIMS: Adult orthotopic liver transplantation (OLT) is associated with considerable blood product requirements. The aim of this study was to assess the ability of preoperative information to predict intraoperative red blood cell (RBC) transfusion requirements among adult liver recipients. METHODS: Preoperative variables with previously demonstrated relationships to intraoperative RBC transfusion were identified from the literature: sex, age, pathology, prothrombin time (PT), factor V, hemoglobin (Hb), and platelet count (plt). These variables were then retrospectively collected from 758 consecutive adult patients undergoing OLT from 1997 to 2007. Relationships between these variables and intraoperative blood transfusion requirements were examined by both univariate analysis and multiple linear regression analysis. RESULTS: Univariate analysis confirmed significant associations between RBC transfusion and PT, factor V, Hb, Plt, pathology, and age (P values all < .001). However, stepwise backward multivariate analysis excluded variables Plt and factor V from the multiple regression linear model. The variables included in the final predictive model were PT, Hb, age, and pathology. Patients suffering from liver carcinoma required more blood products than those suffering from other pathologies. Yet, the overall predictive power of the final model was limited (R(2) = .308; adjusted R(2) = .30). CONCLUSION: Preoperative variables have limited predictive power for intraoperative RBC transfusion requirements even when significant statistical associations exist, identifying only a small portion of the observed total transfusion variability. Preoperative PT, Hb, age, and liver pathology seem to be the most significant predictive factors but other factors like severity of liver disease, surgical technique, medical experience in liver transplantation, and other noncontrollable human variables may play important roles to determine the final transfusion requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-content analysis has revolutionized cancer drug discovery by identifying substances that alter the phenotype of a cell, which prevents tumor growth and metastasis. The high-resolution biofluorescence images from assays allow precise quantitative measures enabling the distinction of small molecules of a host cell from a tumor. In this work, we are particularly interested in the application of deep neural networks (DNNs), a cutting-edge machine learning method, to the classification of compounds in chemical mechanisms of action (MOAs). Compound classification has been performed using image-based profiling methods sometimes combined with feature reduction methods such as principal component analysis or factor analysis. In this article, we map the input features of each cell to a particular MOA class without using any treatment-level profiles or feature reduction methods. To the best of our knowledge, this is the first application of DNN in this domain, leveraging single-cell information. Furthermore, we use deep transfer learning (DTL) to alleviate the intensive and computational demanding effort of searching the huge parameter's space of a DNN. Results show that using this approach, we obtain a 30% speedup and a 2% accuracy improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Administração

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we focus on factor analysis from a best practices point of view, by investigating the factor structure of neuropsychological tests and using the results obtained to illustrate on choosing a reasonable solution. The sample (n=1051 individuals) was randomly divided into two groups: one for exploratory factor analysis (EFA) and principal component analysis (PCA), to investigate the number of factors underlying the neurocognitive variables; the second to test the "best fit" model via confirmatory factor analysis (CFA). For the exploratory step, three extraction (maximum likelihood, principal axis factoring and principal components) and two rotation (orthogonal and oblique) methods were used. The analysis methodology allowed exploring how different cognitive/psychological tests correlated/discriminated between dimensions, indicating that to capture latent structures in similar sample sizes and measures, with approximately normal data distribution, reflective models with oblimin rotation might prove the most adequate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed at identifying clinical factors for predicting hematologic toxicity after radioimmunotherapy with (90)Y-ibritumomab tiuxetan or (131)I-tositumomab in clinical practice. Hematologic data were available from 14 non-Hodgkin lymphoma patients treated with (90)Y-ibritumomab tiuxetan and 18 who received (131)I-tositumomab. The percentage baseline at nadir and 4 wk post nadir and the time to nadir were selected as the toxicity indicators for both platelets and neutrophils. Multiple linear regression analysis was performed to identify significant predictors (P < 0.05) of each indicator. For both platelets and neutrophils, pooled and separate analyses of (90)Y-ibritumomab tiuxetan and (131)I-tositumomab data yielded the time elapsed since the last chemotherapy as the only significant predictor of the percentage baseline at nadir. The extent of bone marrow involvement was not a significant factor in this study, possibly because of the short time elapsed since the last chemotherapy of the 7 patients with bone marrow involvement. Because both treatments were designed to deliver a comparable bone marrow dose, this factor also was not significant. None of the 14 factors considered was predictive of the time to nadir. The R(2) value for the model predicting percentage baseline at nadir was 0.60 for platelets and 0.40 for neutrophils. This model predicted the platelet and neutrophil toxicity grade to within ±1 for 28 and 30 of the 32 patients, respectively. For the 7 patients predicted with grade I thrombocytopenia, 6 of whom had actual grade I-II, dosing might be increased to improve treatment efficacy. The elapsed time since the last chemotherapy can be used to predict hematologic toxicity and customize the current dosing method in radioimmunotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors investigated the dimensionality of the French version of the Rosenberg Self-Esteem Scale (RSES; Rosenberg, 1965) using confirmatory factor analysis. We tested models of 1 or 2 factors. Results suggest the RSES is a 1-dimensional scale with 3 highly correlated items. Comparison with the Revised NEO-Personality Inventory (NEO-PI-R; Costa, McCrae, & Rolland, 1998) demonstrated that Neuroticism correlated strongly and Extraversion and Conscientiousness moderately with the RSES. Depression accounted for 47% of the variance of the RSES. Other NEO-PI-R facets were also moderately related with self-esteem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tourism consumer’s purchase decision process is, to a great extent, conditioned by the image the tourist has of the different destinations that make up his or her choice set. In a highly competitive international tourist market, those responsible for destinations’ promotion and development policies seek differentiation strategies so that they may position the destinations in the most suitable market segments for their product in order to improve their attractiveness to visitors and increase or consolidate the economic benefits that tourism activity generates in their territory. To this end, the main objective we set ourselves in this paper is the empirical analysis of the factors that determine the image formation of Tarragona city as a cultural heritage destination. Without a doubt, UNESCO’s declaration of Tarragona’s artistic and monumental legacies as World Heritage site in the year 2000 meant important international recognition of the quality of the cultural and patrimonial elements offered by the city to the visitors who choose it as a tourist destination. It also represents a strategic opportunity to boost the city’s promotion of tourism and its consolidation as a unique destination given its cultural and patrimonial characteristics. Our work is based on the use of structured and unstructured techniques to identify the factors that determine Tarragona’s tourist destination image and that have a decisive influence on visitors’ process of choice of destination. In addition to being able to ascertain Tarragona’s global tourist image, we consider that the heterogeneity of its visitors requires a more detailed study that enables us to segment visitor typology. We consider that the information provided by these results may prove of great interest to those responsible for local tourism policy, both when designing products and when promoting the destination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to analyze the replicability of Zuckerman's revised Alternative Five-factor model in a French-speaking context by validating the Zuckerman-Kuhlman-Aluja Personality Questionnaire (ZKA-PQ) simultaneously in 4 French-speaking countries. The total sample was made up of 1,497 subjects from Belgium, Canada, France, and Switzerland. The internal consistencies for all countries were generally similar to those found for the normative U.S. and Spanish samples. A factor analysis confirmed that the normative structure replicated well and was stable within this French-speaking context. Moreover, multigroup confirmatory factor analyses have shown that the ZKA-PQ reaches scalar invariance across these 4 countries. Mean scores were slightly different for women and men, with women scoring higher on Neuroticism but lower on Sensation Seeking. Globally, mean score differences across countries were small. Overall, the ZKA-PQ seems an interesting alternative to assess both lower and higher order personality traits for applied or research purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visceral larva migrans syndrome by Toxocara affects mainly children between 2 and 5 years of age, it is generally asymptomatic, and the seroprevalence varies from 3 to 86% in different countries. A total of 399 schoolchildren from 14 public schools of the Butantã region, São Paulo city, Brazil, were evaluated by Toxocara serology (enzyme-linked immunosorbent assay). Epidemiological data to the Toxocara infection obtained from a protocol were submitted to multiple logistic regression analysis for a risk profile definition. Blood was collected on filter paper by finger puncture, with all samples tested in duplicate. Considering titers > 1/160 as positive, the seroprevalence obtained was 38.8%. Among infected children, the mean age was 9.4 years, with a similar distribution between genders. A significant association was observed with the presence of onychophagia, residence with a dirty backyard, living in a slum, previous wheezing episodes, school attended, and family income (p < 0.05). All data, except "living in a slum", were considered to be determinant of a risk profile for the acquisition of Toxocara infection. A monthly income > 5 minimum salaries represented a protective factor, although of low relevance. Toxocara eggs were found in at least one of the soil samples obtained from five schools, with high prevalence of Toxocara infections, indicating the frequent soil contamination by this agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Multiple logistic regression is precluded from many practical applications in ecology that aim to predict the geographic distributions of species because it requires absence data, which are rarely available or are unreliable. In order to use multiple logistic regression, many studies have simulated "pseudo-absences" through a number of strategies, but it is unknown how the choice of strategy influences models and their geographic predictions of species. In this paper we evaluate the effect of several prevailing pseudo-absence strategies on the predictions of the geographic distribution of a virtual species whose "true" distribution and relationship to three environmental predictors was predefined. We evaluated the effect of using a) real absences b) pseudo-absences selected randomly from the background and c) two-step approaches: pseudo-absences selected from low suitability areas predicted by either Ecological Niche Factor Analysis: (ENFA) or BIOCLIM. We compared how the choice of pseudo-absence strategy affected model fit, predictive power, and information-theoretic model selection results. Results Models built with true absences had the best predictive power, best discriminatory power, and the "true" model (the one that contained the correct predictors) was supported by the data according to AIC, as expected. Models based on random pseudo-absences had among the lowest fit, but yielded the second highest AUC value (0.97), and the "true" model was also supported by the data. Models based on two-step approaches had intermediate fit, the lowest predictive power, and the "true" model was not supported by the data. Conclusion If ecologists wish to build parsimonious GLM models that will allow them to make robust predictions, a reasonable approach is to use a large number of randomly selected pseudo-absences, and perform model selection based on an information theoretic approach. However, the resulting models can be expected to have limited fit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The association between mental disorders (MDs) and iatrogenic complications after hip fracture surgery has been poorly studied. Among iatrogenic complications, nosocomial infections (NIs) are a major factor in hip fracture surgery. The aim of this paper was to determine whether patients with a MD and a hip fracture develop more NIs after hip surgery than patients with no MD. We studied 912 patients who underwent surgery for a hip fracture (223 patients with a MD who underwent surgery for a hip fracture and 689 control patients without a MD who also underwent surgery for a hip fracture) and followed them after surgery. Univariable and multivariable analyses were performed using simple and multiple logistic regression analysis (confidence interval, crude and adjusted odds ratios, and P value). We found that MDs, gender, and comorbidities were not associated with a higher risk of developing a NI after surgery for a hip fracture. Only age increases the risk of a NI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/objectives:Bioelectrical impedance analysis (BIA) is used in population and clinical studies as a technique for estimating body composition. Because of significant under-representation in existing literature, we sought to develop and validate predictive equation(s) for BIA for studies in populations of African origin.Subjects/methods:Among five cohorts of the Modeling the Epidemiologic Transition Study, height, weight, waist circumference and body composition, using isotope dilution, were measured in 362 adults, ages 25-45 with mean body mass indexes ranging from 24 to 32. BIA measures of resistance and reactance were measured using tetrapolar placement of electrodes and the same model of analyzer across sites (BIA 101Q, RJL Systems). Multiple linear regression analysis was used to develop equations for predicting fat-free mass (FFM), as measured by isotope dilution; covariates included sex, age, waist, reactance and height(2)/resistance, along with dummy variables for each site. Developed equations were then tested in a validation sample; FFM predicted by previously published equations were tested in the total sample.Results:A site-combined equation and site-specific equations were developed. The mean differences between FFM (reference) and FFM predicted by the study-derived equations were between 0.4 and 0.6âeuro0/00kg (that is, 1% difference between the actual and predicted FFM), and the measured and predicted values were highly correlated. The site-combined equation performed slightly better than the site-specific equations and the previously published equations.Conclusions:Relatively small differences exist between BIA equations to estimate FFM, whether study-derived or published equations, although the site-combined equation performed slightly better than others. The study-derived equations provide an important tool for research in these understudied populations.