862 resultados para multimodal skrivundervisning
Resumo:
The past few years, multimodal interaction has been gaining importance in virtual environments. Although multimodality renders interacting with an environment more natural and intuitive, the development cycle of such an application is often long and expensive. In our overall field of research, we investigate how modelbased design can facilitate the development process by designing environments through the use of highlevel diagrams. In this scope, we present ‘NiMMiT’, a graphical notation for expressing and evaluating multimodal user interaction; we elaborate on the NiMMiT primitives and demonstrate its use by means of a comprehensive example.
Resumo:
Information theory-based metric such as mutual information (MI) is widely used as similarity measurement for multimodal registration. Nevertheless, this metric may lead to matching ambiguity for non-rigid registration. Moreover, maximization of MI alone does not necessarily produce an optimal solution. In this paper, we propose a segmentation-assisted similarity metric based on point-wise mutual information (PMI). This similarity metric, termed SPMI, enhances the registration accuracy by considering tissue classification probabilities as prior information, which is generated from an expectation maximization (EM) algorithm. Diffeomorphic demons is then adopted as the registration model and is optimized in a hierarchical framework (H-SPMI) based on different levels of anatomical structure as prior knowledge. The proposed method is evaluated using Brainweb synthetic data and clinical fMRI images. Both qualitative and quantitative assessment were performed as well as a sensitivity analysis to the segmentation error. Compared to the pure intensity-based approaches which only maximize mutual information, we show that the proposed algorithm provides significantly better accuracy on both synthetic and clinical data.
Resumo:
Multimodality – the interdependence of semiotic resources in text – is an existential element of today’s media. The term multimodality attends systematically to the social interpretation of a wide range of communicational forms used in meaning making. A primary focus of social- semiotic multimodal analysis is on mapping how modal resources are used by people in a given social context. In November 2012 the “Ola ke ase” catchphrase, which is a play on “Hola ¿qué hace?”, appeared for the first time in Spain and immediately has been adopted as a Twitter hashtag and an image macro series. Its viral spread on social networks has been tremendous, being a trending topic in various Spanish-speaking countries. The objective of analysis is how language and image work together in the “Ola ke ase” meme. The interplay between text and image in one of the original memes and some of its variations is quantitatively analysed applying a social-semiotic approach. Results demonstrate how the “Ola ke ase” meme functions through its multimodal character and the non-standard orthography. The spread of uncountable variations of the meme shows the social process that goes on in the meaning making of the semiotic elements.
Resumo:
We present a fully automatic segmentation method for multi-modal brain tumor segmentation. The proposed generative-discriminative hybrid model generates initial tissue probabilities, which are used subsequently for enhancing the classi�cation and spatial regularization. The model has been evaluated on the BRATS2013 training set, which includes multimodal MRI images from patients with high- and low-grade gliomas. Our method is capable of segmenting the image into healthy (GM, WM, CSF) and pathological tissue (necrotic, enhancing and non-enhancing tumor, edema). We achieved state-of-the-art performance (Dice mean values of 0.69 and 0.8 for tumor subcompartments and complete tumor respectively) within a reasonable timeframe (4 to 15 minutes).
Resumo:
BACKGROUND AND PURPOSE The aim of this prospective study was to assess vascular integrity after stent-retriever thrombectomy. METHODS Dissection, contrast medium extravasation, and vasospasm were evaluated in 23 patients after thrombectomy with biplane or 3D-digital subtraction angiography and 3-Tesla vessel wall MRI. RESULTS Vasospasm was detected angiographically in 10 patients, necessitating intra-arterial nimodipine in 2 of them. Contrast extravasation, intramural hemorrhage, or iatrogenic dissection were not detected on multimodal MRI in any patient even after Y-double stent-retriever technique. CONCLUSIONS Our findings suggest that clinically relevant vessel wall injuries occur rarely after stent-retriever thrombectomy.
Resumo:
White matter connects different brain areas and applies electrical insulation to the neuron’s axons with myelin sheaths in order to enable quick signal transmission. Due to its modulatory properties in signal conduction, white matter plays an essential role in learning, cognition and psychiatric disorders (Fields, 2008a). In respect thereof, the non-invasive investigation of white matter anatomy and function in vivo provides the unique opportunity to explore the most complex organ of our body. Thus, the present thesis aimed to apply a multimodal neuroimaging approach to investigate different white matter properties in psychiatric and healthy populations. On the one hand, white matter microstructural properties were investigated in a psychiatric population; on the other hand, white matter metabolic properties were assessed in healthy adults providing basic information about the brain’s wiring entity. As a result, three research papers are presented here. The first paper assessed the microstructural properties of white matter in relation to a frequent epidemiologic finding in schizophrenia. As a result, reduced white matter integrity was observed in patients born in summer and autumn compared to patients born in winter and spring. Despite the large genetic basis of schizophrenia, accumulating evidence indicates that environmental exposures may be implicated in the development of schizophrenia (A. S. Brown, 2011). Notably, epidemiologic studies have shown a 5–8% excess of births during winter and spring for patients with schizophrenia on the Northern Hemisphere at higher latitudes (Torrey, Miller, Rawlings, & Yolken, 1997). Although the underlying mechanisms are unclear, the seasonal birth effect may indicate fluctuating environmental risk factors for schizophrenia. Thus, exposure to harmful factors during foetal development may result in the activation of pathologic neural circuits during adolescence or young adulthood, increasing the risk of schizophrenia (Fatemi & Folsom, 2009). While white matter development starts during the foetal period and continues until adulthood, its major development is accomplished by the age of two years (Brody, Kinney, Kloman, & Gilles, 1987; Huang et al., 2009). This indicates a vulnerability period of white matter that may coincide with the fluctuating environmental risk factors for schizophrenia. Since microstructural alterations of white matter in schizophrenia are frequently observed, the current study provided evidence for the neurodevelopmental hypothesis of schizophrenia. In the second research paper, the perfusion of white matter showed a positive correlation between white matter microstructure and its perfusion with blood across healthy adults. This finding was in line with clinical studies indicating a tight coupling between cerebral perfusion and WM health across subjects (Amann et al., 2012; Chen, Rosas, & Salat, 2013; Kitagawa et al., 2009). Although relatively little is known about the metabolic properties of white matter, different microstructural properties, such as axon diameter and myelination, might be coupled with the metabolic demand of white matter. Furthermore, the ability to detect perfusion signal in white matter was in accordance with a recent study showing that technical improvements, such as pseudo-continuous arterial spin labeling, enabled the reliable detection of white matter perfusion signal (van Osch et al., 2009). The third paper involved a collaboration within the same department to assess the interrelation between functional connectivity networks and their underlying structural connectivity.
Resumo:
BACKGROUND The optimal management of high-risk prostate cancer remains uncertain. In this study we assessed the safety and efficacy of a novel multimodal treatment paradigm for high-risk prostate cancer. METHODS This was a prospective phase II trial including 35 patients with newly diagnosed high-risk localized or locally advanced prostate cancer treated with high-dose intensity-modulated radiation therapy preceded or not by radical prostatectomy, concurrent intensified-dose docetaxel-based chemotherapy and long-term androgen deprivation therapy. Primary endpoint was acute and late toxicity evaluated with the Common Terminology Criteria for Adverse Events version 3.0. Secondary endpoint was biochemical and clinical recurrence-free survival explored with the Kaplan-Meier method. RESULTS Acute gastro-intestinal and genito-urinary toxicity was grade 2 in 23% and 20% of patients, and grade 3 in 9% and 3% of patients, respectively. Acute blood/bone marrow toxicity was grade 2 in 20% of patients. No acute grade ≥ 4 toxicity was observed. Late gastro-intestinal and genito-urinary toxicity was grade 2 in 9% of patients each. No late grade ≥ 3 toxicity was observed. Median follow-up was 63 months (interquartile range 31-79). Actuarial 5-year biochemical and clinical recurrence-free survival rate was 55% (95% confidence interval, 35-75%) and 70% (95% confidence interval, 52-88%), respectively. CONCLUSIONS In our phase II trial testing a novel multimodal treatment paradigm for high-risk prostate cancer, toxicity was acceptably low and mid-term oncological outcome was good. This treatment paradigm, thus, may warrant further evaluation in phase III randomized trials.
Resumo:
We offer here a multimodal discourse analysis of a range of verbal (writing and speech), nonverbal (movement and gesture) and technological (photography and video) resources used by tourists at the Leaning Tower of Pisa. In doing so, we pin-point the recycling and layering of mediatized representations (e.g. guidebooks and official brochures), mediated actions (e.g. climbing the Tower or posing in front of it), and remediated practices (e.g. posting a YouTube video of oneself climbing the 294 steps to the top of the Tower). Through this kind of empirically-based examination of tourists’ discursive and embodied performances – their ways of talking about and behaving in spaces – we witness how people never simply visit places but are always actively shaping and making these places. The Leaning Tower of Pisa is, therefore, as much an emergent production of the tourist imagination as it is a pre-existing, lop-sided construction of stone.
Resumo:
In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients - manually annotated by up to four raters - and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all subregions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.
Resumo:
We report a case of a 33-year-old woman with emergency admission due to dyspnoea and fever. History included squamous cell carcinoma of the cervix in complete remission. Contrast-enhanced computed tomography (CT) scanning of the chest, which was indicated to rule out pneumonia, revealed an infiltrative cardiac mass. Further assessment of the tumour by echocardiography and cardiac magnetic resonance imaging (MRI) showed transmural infiltration of the apical interventricular septum with a mass extending into the left and right ventricle cavities. The mass was highly suspicious for a cardiac metastasis. Cardiac metastases from cervical cancer are extremely rare. Recurrence of cervical carcinoma involving the heart should be considered even after a curative therapy approach. Non-invasive imaging plays a paramount role in investigating cardiac masses. Echocardiography, CT and MRI are complementary imaging modalities for complete work-up of intracardiac lesions.
Resumo:
While sequence learning research models complex phenomena, previous studies have mostly focused on unimodal sequences. The goal of the current experiment is to put implicit sequence learning into a multimodal context: to test whether it can operate across different modalities. We used the Task Sequence Learning paradigm to test whether sequence learning varies across modalities, and whether participants are able to learn multimodal sequences. Our results show that implicit sequence learning is very similar regardless of the source modality. However, the presence of correlated task and response sequences was required for learning to take place. The experiment provides new evidence for implicit sequence learning of abstract conceptual representations. In general, the results suggest that correlated sequences are necessary for implicit sequence learning to occur. Moreover, they show that elements from different modalities can be automatically integrated into one unitary multimodal sequence.
Resumo:
PURPOSE: To evaluate and characterize multiple evanescent white dot syndrome abnormalities with modern multimodal imaging modalities. METHODS: This retrospective cohort study evaluated fundus photography, fluorescein angiography, indocyanine green angiography, optical coherence tomography, enhanced depth imaging optical coherence tomography, short-wavelength autofluorescence, and near-infrared autofluorescence. RESULTS: Thirty-four multiple evanescent white dot syndrome patients with mean age of 28.7 years were studied (range, 14-49 years). Twenty-six patients were women, and eight were men. Initial mean visual acuity was 0.41 logMAR. Final mean visual acuity was 0.03 logMAR. Fluorescein angiography shows a variable number of mid retinal early fluorescent dots distributed in a wreathlike pattern, which correlate to fundus photography, fundus autofluorescence, and indocyanine green angiography. Indocyanine green angiography imaging shows the dots and also hypofluorescent, deeper, and larger spots, which are occasionally confluent, demonstrating a large plaque of deep retinal hypofluorescence. Optical coherence tomography imaging shows multifocal debris centered at and around the ellipsoid layer, corresponding to the location of spots seen with photography, indocyanine green angiography, and fluorescein angiography. Protrusions of the hyperreflectant material from the ellipsoid layer toward the outer nuclear layer correspond to the location of dots seen with photography, indocyanine green angiography, and fluorescein angiography. CONCLUSION: Multimodal imaging analysis of the retina in patients with multiple evanescent white dot syndrome shows additional features that may help in the diagnosis of the disease and in further understanding its etiology. Multiple evanescent white dot syndrome is predominantly a disease of the outer retina, centered at the ellipsoid zone, but also involving the interdigitation zone and the outer nuclear layer.