920 resultados para multi-layer transfer-matrix
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Pós-graduação em Geologia Regional - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Artificial neural networks (ANNs) have been widely applied to the resolution of complex biological problems. An important feature of neural models is that their implementation is not precluded by the theoretical distribution shape of the data used. Frequently, the performance of ANNs over linear or non-linear regression-based statistical methods is deemed to be significantly superior if suitable sample sizes are provided, especially in multidimensional and non-linear processes. The current work was aimed at utilising three well-known neural network methods in order to evaluate whether these models would be able to provide more accurate outcomes in relation to a conventional regression method in pupal weight predictions of Chrysomya megacephala, a species of blowfly (Diptera: Calliphoridae), using larval density (i.e. the initial number of larvae), amount of available food and pupal size as input data. It was possible to notice that the neural networks yielded more accurate performances in comparison with the statistical model (multiple regression). Assessing the three types of networks utilised (Multi-layer Perceptron, Radial Basis Function and Generalised Regression Neural Network), no considerable differences between these models were detected. The superiority of these neural models over a classical statistical method represents an important fact, because more accurate models may clarify several intricate aspects concerning the nutritional ecology of blowflies.
Resumo:
The level structures of the N = 50 As-83, Ge-82, and Ga-81 isotones have been investigated by means of multi-nucleon transfer reactions. A first experiment was performed with the CLARA PRISMA setup to identify these nuclei. A second experiment was carried out with the GASP array in order to deduce the gamma-ray coincidence information. The results obtained on the high-spin states of such nuclei are used to test the stability of the N = 50 shell closure in the region of Ni-78 (Z = 28). The comparison of the experimental level schemes with the shell-model calculations yields an N = 50 energy gap value of 4.7(3) MeV at Z = 28. This value, in a good agreement with the prediction of the finite-range liquid-drop model as well as with the recent large-scale shell model calculations, does not support a weakening of the N = 50 shell gap down to Z = 28. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
As estimações das taxas de inflação são de fundamental importância para os gestores, pois as decisões de investimento estão intimamente ligadas a elas. Contudo, o comportamento inflacionário tende a ser não linear e até mesmo caótico, tornando difícil a sua correta estimação. Essa característica do fenômeno pode tornar imprecisos os modelos mais simples de previsão, acessíveis às pequenas organizações, uma vez que muitos deles necessitam de grandes manipulações de dados e/ou softwares especializados. O presente artigo tem por objetivo avaliar, por meio de análise formal estatística, a eficácia das redes neurais artificiais (RNA) na previsão da inflação, dentro da realidade de organizações de pequeno porte. As RNA são ferramentas adequadas para mensurar os fenômenos inflacionários, por se tratar de aproximações de funções polinomiais, capazes de lidar com fenômenos não lineares. Para esse processo, foram selecionados três modelos básicos de redes neurais artificiais Multi Layer Perceptron, passíveis de implementação a partir de planilhas eletrônicas de código aberto. Os três modelos foram testados a partir de um conjunto de variáveis independentes sugeridas por Bresser-Pereira e Nakano (1984), com defasagem de um, seis e doze meses. Para tal, foram utilizados testes de Wilcoxon, coeficiente de determinação R² e o percentual de erro médio dos modelos. O conjunto de dados foi dividido em dois, sendo um grupo usado para treinamento das redes neurais artificiais, enquanto outro grupo era utilizado para verificar a capacidade de predição dos modelos e sua capacidade de generalização. Com isso, o trabalho concluiu que determinados modelos de redes neurais artificiais têm uma razoável capacidade de predição da inflação no curto prazo e se constituem em uma alternativa razoável para esse tipo de mensuração.