919 resultados para multi-environments experiments
Resumo:
This paper tackles a Nurse Scheduling Problem which consists of generating work schedules for a set of nurses while considering their shift preferences and other requirements. The objective is to maximize the satisfaction of nurses' preferences and minimize the violation of soft constraints. This paper presents a new deterministic heuristic algorithm, called MAPA (multi-assignment problem-based algorithm), which is based on successive resolutions of the assignment problem. The algorithm has two phases: a constructive phase and an improvement phase. The constructive phase builds a full schedule by solving successive assignment problems, one for each day in the planning period. The improvement phase uses a couple of procedures that re-solve assignment problems to produce a better schedule. Given the deterministic nature of this algorithm, the same schedule is obtained each time that the algorithm is applied to the same problem instance. The performance of MAPA is benchmarked against published results for almost 250,000 instances from the NSPLib dataset. In most cases, particularly on large instances of the problem, the results produced by MAPA are better when compared to best-known solutions from the literature. The experiments reported here also show that the MAPA algorithm finds more feasible solutions compared with other algorithms in the literature, which suggest that this proposed approach is effective and robust. © 2013 Springer Science+Business Media New York.
Resumo:
The mortality caused by snakebites is more damaging than many tropical diseases, such as dengue haemorrhagic fever, cholera, leishmaniasis, schistosomiasis and Chagas disease. For this reason, snakebite envenoming adversely affects health services of tropical and subtropical countries and is recognized as a neglected disease by the World Health Organization. One of the main components of snake venoms is the Lys49-phospholipases A2, which is catalytically inactive but possesses other toxic and pharmacological activities. Preliminary studies with MjTX-I from Bothrops moojeni snake venom revealed intriguing new structural and functional characteristics compared to other bothropic Lys49-PLA2s. We present in this article a comprehensive study with MjTX-I using several techniques, including crystallography, small angle X-ray scattering, analytical size-exclusion chromatography, dynamic light scattering, myographic studies, bioinformatics and molecular phylogenetic analyses.Based in all these experiments we demonstrated that MjTX-I is probably a unique Lys49-PLA2, which may adopt different oligomeric forms depending on the physical-chemical environment. Furthermore, we showed that its myotoxic activity is dramatically low compared to other Lys49-PLA2s, probably due to the novel oligomeric conformations and important mutations in the C-terminal region of the protein. The phylogenetic analysis also showed that this toxin is clearly distinct from other bothropic Lys49-PLA2s, in conformity with the peculiar oligomeric characteristics of MjTX-I and possible emergence of new functionalities inresponse to environmental changes and adaptation to new preys. © 2013 Salvador et al.
Resumo:
The major contribution of this paper relates to the practical advantages of combining Ground Control Points (GCPs), Ground Control Lines (GCLs) and orbital data to estimate the exterior orientation parameters of images collected by CBERS-2B (China-Brazil Earth Resources Satellite) HRC (High-resolution Camera) and CCD (High-resolution CCD Camera) sensors. Although the CBERS-2B is no longer operational, its images are still being used in Brazil, and the next generations of the CBERS satellite will have sensors with similar technical features, which motivates the study presented in this paper. The mathematical models that relate the object and image spaces are based on collinearity (for points) and coplanarity (for lines) conditions. These models were created in an in-house developed software package called TMS (Triangulation with Multiple Sensors) with multi-feature control (GCPs and GCLs). Experiments on a block of four CBERS-2B HRC images and on one CBERS-2B CCD image were performed using both models. It was observed that the combination of GCPs and GCLs provided better bundle block adjustment results than conventional bundle adjustment using only GCPs. The results also demonstrate the advantages of using primarily orbital data when the number of control entities is reduced. © 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
The physics of plasmas encompasses basic problems from the universe and has assured us of promises in diverse applications to be implemented in a wider range of scientific and engineering domains, linked to most of the evolved and evolving fundamental problems. Substantial part of this domain could be described by R–D mechanisms involving two or more species (reaction–diffusion mechanisms). These could further account for the simultaneous non-linear effects of heating, diffusion and other related losses. We mention here that in laboratory scale experiments, a suitable combination of these processes is of vital importance and very much decisive to investigate and compute the net behaviour of plasmas under consideration. Plasmas are being used in the revolution of information processing, so we considered in this technical note a simple framework to discuss and pave the way for better formalisms and Informatics, dealing with diverse domains of science and technologies. The challenging and fascinating aspects of plasma physics is that it requires a great deal of insight in formulating the relevant design problems, which in turn require ingenuity and flexibility in choosing a particular set of mathematical (and/or experimental) tools to implement them.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study investigated the influence of top-down and bottom-up information on speech perception in complex listening environments. Specifically, the effects of listening to different types of processed speech were examined on intelligibility and on simultaneous visual-motor performance. The goal was to extend the generalizability of results in speech perception to environments outside of the laboratory. The effect of bottom-up information was evaluated with natural, cell phone and synthetic speech. The effect of simultaneous tasks was evaluated with concurrent visual-motor and memory tasks. Earlier works on the perception of speech during simultaneous visual-motor tasks have shown inconsistent results (Choi, 2004; Strayer & Johnston, 2001). In the present experiments, two dual-task paradigms were constructed in order to mimic non-laboratory listening environments. In the first two experiments, an auditory word repetition task was the primary task and a visual-motor task was the secondary task. Participants were presented with different kinds of speech in a background of multi-speaker babble and were asked to repeat the last word of every sentence while doing the simultaneous tracking task. Word accuracy and visual-motor task performance were measured. Taken together, the results of Experiments 1 and 2 showed that the intelligibility of natural speech was better than synthetic speech and that synthetic speech was better perceived than cell phone speech. The visual-motor methodology was found to demonstrate independent and supplemental information and provided a better understanding of the entire speech perception process. Experiment 3 was conducted to determine whether the automaticity of the tasks (Schneider & Shiffrin, 1977) helped to explain the results of the first two experiments. It was found that cell phone speech allowed better simultaneous pursuit rotor performance only at low intelligibility levels when participants ignored the listening task. Also, simultaneous task performance improved dramatically for natural speech when intelligibility was good. Overall, it could be concluded that knowledge of intelligibility alone is insufficient to characterize processing of different speech sources. Additional measures such as attentional demands and performance of simultaneous tasks were also important in characterizing the perception of different kinds of speech in complex listening environments.
Resumo:
Receiving coastal waters and estuaries are among the most nutrient-enriched environments on earth, and one of the symptoms of the resulting eutrophication is the proliferation of opportunistic, fast-growing marine seaweeds. Here, we used a widespread macroalga often involved in blooms, Ulva spp., to investigate how supply of nitrogen (N) and phosphorus (P), the two main potential growth-limiting nutrients, influence macroalgal growth in temperate and tropical coastal waters ranging from low- to high-nutrient supplies. We carried out N and P enrichment field experiments on Ulva spp. in seven coastal systems, with one of these systems represented by three different subestuaries, for a total of nine sites. We showed that rate of growth of Ulva spp. was directly correlated to annual dissolved inorganic nitrogen (DIN) concentrations, where growth increased with increasing DIN concentration. Internal N pools of macroalgal fronds were also linked to increased DIN supply, and algal growth rates were tightly coupled to these internal N pools. The increases in DIN appeared to be related to greater inputs of wastewater to these coastal waters as indicated by high delta 15N signatures of the algae as DIN increased. N and P enrichment experiments showed that rate of macroalgal growth was controlled by supply of DIN where ambient DIN concentrations were low, and by P where DIN concentrations were higher, regardless of latitude or geographic setting. These results suggest that understanding the basis for macroalgal blooms, and management of these harmful phenomena, will require information as to nutrient sources, and actions to reduce supply of N and P in coastal waters concerned.
Resumo:
Despite their importance in the evaluation of petroleum and gas reservoirs, measurements of self-potential data under borehole conditions (well-logging) have found only minor applications in aquifer and waste-site characterization. This can be attributed to lower signals from the diffusion fronts in near-surface environments because measurements are made long after the drilling of the well, when concentration fronts are already disappearing. Proportionally higher signals arise from streaming potentials that prevent using simple interpretation models that assume signals from diffusion only. Our laboratory experiments found that dual-source self-potential signals can be described by a simple linear model, and that contributions (from diffusion and streaming potentials) can be isolated by slightly perturbing the borehole conditions. Perturbations are applied either by changing the concentration of the borehole-filling solution or its column height. Parameters useful for formation evaluation can be estimated from data measured during perturbations, namely, pore water resistivity, pressure drop across the borehole wall, and electrokinetic coupling parameter. These are important parameters to assess, respectively, water quality, aquifer lateral continuity, and interfacial properties of permeable formations.
Resumo:
Background: Common bean (Phaseolus vulgaris L.) is the most important grain legume for human diet worldwide and the angular leaf spot (ALS) is one of the most devastating diseases of this crop, leading to yield losses as high as 80%. In an attempt to breed resistant cultivars, it is important to first understand the inheritance mode of resistance and to develop tools that could be used in assisted breeding. Therefore, the aim of this study was to identify quantitative trait loci (QTL) controlling resistance to ALS under natural infection conditions in the field and under inoculated conditions in the greenhouse. Results: QTL analyses were made using phenotypic data from 346 recombinant inbreed lines from the IAC-UNA x CAL 143 cross, gathered in three experiments, two of which were conducted in the field in different seasons and one in the greenhouse. Joint composite interval mapping analysis of QTL x environment interaction was performed. In all, seven QTLs were mapped on five linkage groups. Most of them, with the exception of two, were significant in all experiments. Among these, ALS10.1(DG,UC) presented major effects (R-2 between 16% - 22%). This QTL was found linked to the GATS11b marker of linkage group B10, which was consistently amplified across a set of common bean lines and was associated with the resistance. Four new QTLs were identified. Between them the ALS5.2 showed an important effect (9.4%) under inoculated conditions in the greenhouse. ALS4.2 was another major QTL, under natural infection in the field, explaining 10.8% of the variability for resistance reaction. The other QTLs showed minor effects on resistance. Conclusions: The results indicated a quantitative inheritance pattern of ALS resistance in the common bean line CAL 143. QTL x environment interactions were observed. Moreover, the major QTL identified on linkage group B10 could be important for bean breeding, as it was stable in all the environments. Thereby, the GATS11b marker is a potential tool for marker assisted selection for ALS resistance.
Resumo:
Long-distance correlations (LDCs) of plasma potential fluctuations in the plasma edge have been investigated in the TCABR tokamak in the regime of edge biasing H-mode using an array of multi-pin Langmuir probes. This activity was carried out as part of the scientific programme of the 4th IAEA Joint Experiment (2009). The experimental data confirm the effect of amplification of LDCs in potential fluctuations during biasing recently observed in stellarators and tokamaks. For long toroidal distances between probes, the cross-spectrum is concentrated at low frequencies f < 60 kHz with peaks at f < 5 kHz, f = 13-15 kHz and f similar to 40 kHz and low wave numbers with a maximum at k = 0. The effects of MHD activity on the LDCs in potential fluctuation are investigated.
Resumo:
This paper compares the effectiveness of the Tsallis entropy over the classic Boltzmann-Gibbs-Shannon entropy for general pattern recognition, and proposes a multi-q approach to improve pattern analysis using entropy. A series of experiments were carried out for the problem of classifying image patterns. Given a dataset of 40 pattern classes, the goal of our image case study is to assess how well the different entropies can be used to determine the class of a newly given image sample. Our experiments show that the Tsallis entropy using the proposed multi-q approach has great advantages over the Boltzmann-Gibbs-Shannon entropy for pattern classification, boosting image recognition rates by a factor of 3. We discuss the reasons behind this success, shedding light on the usefulness of the Tsallis entropy and the multi-q approach. (C) 2012 Elsevier B.V. All rights reserved.