994 resultados para movement organisation
Resumo:
Tephritid fruit flies (Diptera: Tephritidae) are considered by far the most important group of horticultural pests worldwide. Female fruit flies lay eggs directly into ripening fruit, where the maggots feed causing fruit loss. Each and every continent is plagued by a number of fruit fly pests, both indigenous as well as invasive ones, causing tremendous economic losses. In addition to the direct losses through damage, they can negatively impact commodity trade through restrictions to market access. The quarantine and regulatory controls put in place to manage them are expensive, while the on-farm control costs and loss of crop affect the general well-being of growers. These constraints can have huge implications on loss in revenues and limitations to developing fruit and vegetable-based agroindustries in developing, emergent and developed nations. Because fruit flies are a global problem, the study of their biology and management requires significant international attention to overcome the hurdles they pose. The Joint Food and Agriculture Organisation / International Atomic Energy Agency (FAO/IAEA) Programme on Nuclear Techniques in Food and Agriculture has been on the foreground in assisting Member States in developing and validating environment-friendly fruit fly suppression systems to support viable fresh fruit and vegetable production and export industries. Such international attention has resulted in the successful development and validation of a Sterile Insect Technique (SIT) package for the Mediterranean fruit fly. Although demands for R&D support with respect to Mediterranean fruit fly are diminishing due to successful integration of this package into sustainable control programmes against this pest in many countries, there were increasing demands from Member States in Africa, Asia and Latin America, to address other major fruit fly pests and a related, but sometimes neglected issue of tephritid species complexes of economic importance. Any research, whether it is basic or applied, requires a taxonomic framework that provides reliable and universally recognized entities and names. Among the currently recognized major fruit fly pests, there are groups of species whose morphology is very similar or identical, but biologically they are distinct species. As such, some insect populations that are grouped taxonomically within the same pest species, display different biological and genetic traits and show reproductive isolation which suggest that they are different species. On the other hand, different species may have been taxonomically described, but there may be doubt as to whether they actually represent distinct biological species or merely geographical variants of the same species. This uncertain taxonomic status has practical implications on the effective development and use of the SIT against such complexes, particularly at the time of determining which species to mass-rear, and significantly affects international movement of fruit and vegetables through the establishment of trade barriers to important agricultural commodities which are hosts to these pest tephritid species...
Resumo:
The monsoon depressions intensify over the Bay of Bengal, move in a west-north-west (WNW) direction and dissipate over the Indian continent. No convincing physical explanation for their observed movement has so far been arrived at, but here, I suggest why the maximum precipitation occurs in the western sector of the depression and propose a feedback mechanism for the WNW movement of the depressions. We assume that a heat source is created over the Bay of Bengal due to organization of cumulus convection by the initial instability. In a linear sense, heating at this latitude (20° N), produces an atmospheric response mainly in the form of a stationary Rossby–gravity wave to the west of the heat source. The low-level vorticity (hence the frictional convergence) and the vertical velocity associated with the steady-state response is such that the maximum moisture convergence (and precipitation) is expected to occur in the WNW sector at a later time. Thus, the heat source moves to the WNW sector at a later time and the feedback continues resulting in the WNW movement of the depressions.
Resumo:
Mathematical models describing the movement of multiple interacting subpopulations are relevant to many biological and ecological processes. Standard mean-field partial differential equation descriptions of these processes suffer from the limitation that they implicitly neglect to incorporate the impact of spatial correlations and clustering. To overcome this, we derive a moment dynamics description of a discrete stochastic process which describes the spreading of distinct interacting subpopulations. In particular, we motivate our model by mimicking the geometry of two typical cell biology experiments. Comparing the performance of the moment dynamics model with a traditional mean-field model confirms that the moment dynamics approach always outperforms the traditional mean-field approach. To provide more general insight we summarise the performance of the moment dynamics model and the traditional mean-field model over a wide range of parameter regimes. These results help distinguish between those situations where spatial correlation effects are sufficiently strong, such that a moment dynamics model is required, from other situations where spatial correlation effects are sufficiently weak, such that a traditional mean-field model is adequate.
Resumo:
Expert interceptive actions are grounded in both perceptual judgment and movement control, yet research has largely focused on the role of anticipation. More recently, the emergence of ecological psychology has provided movement scientists with opportunities to develop further understanding of the processes underpinning the development of expert information-movement couplings. In this chapter we discuss key research that has enhanced our understanding of perceptual learning with specific focus on the concepts of education of attention and calibration. We conclude by discussing the practical implications of this research in the study of expertise highlighting the need for future research using sporting tasks.
Resumo:
The Murray Darling Basin Commison sought information on the movement patterns of native fish in the Murray Darling River system in Queensland. Information is needed to determine daily movement patterns, movement direction and results of flow event analysis.
Resumo:
Patterns of movement in aquatic animals reflect ecologically important behaviours. Cyclical changes in the abiotic environment influence these movements, but when multiple processes occur simultaneously, identifying which is responsible for the observed movement can be complex. Here we used acoustic telemetry and signal processing to define the abiotic processes responsible for movement patterns in freshwater whiprays (Himantura dalyensis). Acoustic transmitters were implanted into the whiprays and their movements detected over 12 months by an array of passive acoustic receivers, deployed throughout 64 km of the Wenlock River, Qld, Australia. The time of an individual's arrival and departure from each receiver detection field was used to estimate whipray location continuously throughout the study. This created a linear-movement-waveform for each whipray and signal processing revealed periodic components within the waveform. Correlation of movement periodograms with those from abiotic processes categorically illustrated that the diel cycle dominated the pattern of whipray movement during the wet season, whereas tidal and lunar cycles dominated during the dry season. The study methodology represents a valuable tool for objectively defining the relationship between abiotic processes and the movement patterns of free-ranging aquatic animals and is particularly expedient when periods of no detection exist within the animal location data.
Resumo:
This article examines Greek activists’ use of a range of communication technologies, including social media, blogs, citizen journalism sites, Web radio, and anonymous networks. Drawing on Anna Tsing’s theoretical model, the article examines key frictions around digital technologies that emerged within a case study of the antifascist movement in Athens, focusing on the period around the 2013 shutdown of Athens Indymedia. Drawing on interviews with activists and analysis of online communications, including issue networks and social media activity, we find that the antifascist movement itself is created and recreated through a process of productive friction, as different groups and individuals with varying ideologies and experiences work together.
Resumo:
Conceptual advances in the field of membrane transport have, in the main, utilized artificial membranes, both planar and vesicular. Systems of biological interest,viz., cells and organelles, resemble vesicles in size and geometry. Methods are, therefore, required to extend the results obtained with planar membranes to liposome systems. In this report we present an analysis of a fluorescence technique, using the divalent cation probe chlortetracycline, in small, unilamellar vesicles, for the study of divalent cation fluxes. An ion carrier (X537 A) and a pore former (alamethicin) have been studied. The rate of rise of fluorescence signal and the transmembrane ion gradient have been related to transmembrane current and potential, respectively. A second power dependence of ion conduction-including the electrically silent portion thereof — on X537 A concentration, has been observed. An exponential dependence of ldquocurrentrdquo on ldquotransmembrane potentialrdquo in the case of alamethicin is also confirmed. Possible errors in the technique are discussed.
Resumo:
Movement rates of eastern king prawns, Melicertus plebejus (Hess), were estimated from historical and recent conventional tag-recapture information collected across eastern Australia. Data from three studies and 2,656 tag recaptures were used. Recaptured males and females both moved east–north-east in central Queensland and north–north-east in southern Queensland and New South Wales. Over a period of one year, the estimated transition matrix reflected the species strong northerly movement and the more complex longitudinal movement, showing a very high probability of eastern movement in central Queensland and almost negligible eastern or western movement in northern New South Wales. The high exchange probability between New South Wales and Queensland waters indicated that spatial assessment models with movement rates between state jurisdictions would improve the management of this single-unit stock.
Resumo:
Temporal and spatial patterns in parasite assemblages were examined to evaluate the degree of movement and connectivity of post-recruitment life-history stages of a large, non-diadromous tropical estuarine teleost, king threadfin Polydactylus macrochir, collected from 18 locations across northern Australia. Ten parasites types (juvenile stages of two nematodes and seven cestodes, and adults of an acanthocephalan) were deemed to be suitable for use as biological tags, in that they were considered to have a long residence time in the fish, were relatively easy to find and were morphologically very different to each other which aided discrimination. Univariate and discriminant function analysis of these parasites revealed little difference in temporal replicates collected from five locations, suggesting that the parasite communities were stable over the timeframes explored. Univariate, discriminant function, and BrayCurtis similarity analyses indicated significant spatial heterogeneity, with BrayCurtis classification accuracies ranging from 55 to 100% for locations in north-western and northern Australia, 24 to 88% in the Gulf of Carpentaria, and 39 to 88% on the east coast of Queensland. Few differences were observed among locations separated by <200 km. The observed patterns of parasite infection are in agreement with concurrent studies of movement and connectivity of P. macrochir in that they indicate a complex population structure across northern Australia. These results should be considered when reviewing the management arrangements for this species.
Resumo:
Movement rates of eastern king prawns, Melicertus plebejus (Hess), were estimated from historical and recent conventional tag-recapture information collected across eastern Australia. Data from three studies and 2,656 tag recaptures were used. Recaptured males and females both moved east-north-east in central Queensland and north-north-east in southern Queensland and New South Wales. Over a period of one year, the estimated transition matrix reflected the species strong northerly movement and the more complex longitudinal movement, showing a very high probability of eastern movement in central Queensland and almost negligible eastern or western movement in northern New South Wales. The high exchange probability between New South Wales and Queensland waters indicated that spatial assessment models with movement rates between state jurisdictions would improve the management of this single-unit stock.
Resumo:
The particles of Potato virus A (PVA; genus Potyvirus) are helically constructed filaments that contain multiple copies of a single type of coat-protein (CP) subunit and a single copy of genome-linked protein (VPg), attached to one end of the virion. Examination of negatively-stained virions by electron microscopy revealed flexuous, rod-shaped particles with no obvious terminal structures. It is known that particles of several filamentous plant viruses incorporate additional minor protein components, forming stable complexes that mediate particle disassembly, movement or transmission by insect vectors. The first objective of this work was to study the interaction of PVA movement-associated proteins with virus particles and how these interactions contribute to the morphology and function of the virus particles. Purified particles of PVA were examined by atomic force microscopy (AFM) and immuno-gold electron microscopy. A protrusion was found at one end of some of the potyvirus particles, associated with the 5' end of the viral RNA. The tip contained two virus-encoded proteins, the genome-linked protein (VPg) and the helper-component proteinase (HC-Pro). Both are required for cell-to-cell movement of the virus. Biochemical and electron microscopy studies of purified PVA samples also revealed the presence of another protein required for cell-to-cell movement the cylindrical inclusion protein (CI), which is also an RNA helicase/ATPase. Centrifugation through a 5-40% sucrose gradient separated virus particles with no detectable CI to a fraction that remained in the gradient, from the CI-associated particles that went to the pellet. Both types of particles were infectious. AFM and translation experiments demonstrated that when the viral CI was not present in the sample, PVA virions had a beads-on-a-string phenotype, and RNA within the virus particles was more accessible to translation. The second objective of this work was to study phosphorylation of PVA movement-associated and structural proteins (CP and VPg) in vitro and, if possible, in vivo. PVA virion structural protein CP is necessary for virus cell-to-cell movement. The tobacco protein kinase CK2 was identified as a kinase phosphorylating PVA CP. A major site of CK2 phosphorylation in PVA CP was identified as a single threonine within a CK2 consensus sequence. Amino acid substitutions affecting the CK2 consensus sequence in CP resulted in viruses that were defective in cell-to-cell and long-distance movement. The CK2 regulation of virion assembly and cell-to-cell movement by phosphorylation of CP was possibly due to the inhibition of CP binding to viral RNA. Four putative phosphorylation sites were identified from an in vitro phosphorylated recombinant VPg. All four were mutated and the spread of mutant viruses in two different host plants was studied. Two putative phosphorylation site mutants (Thr45 and Thr49) had phenotypes identical to that of a wild type (WT) virus infection in both Nicotiana benthamiana and N. tabacum plants. The other two mutant viruses (Thr132/Ser133 and Thr168) showed different phenotypes with increased or decreased accumulation rates, respectively, in inoculated and the first two systemically infected leaves of N. benthamiana. The same mutants were occasionally restricted to single cells in N. tabacum plants, suggesting the importance of these amino acids in the PVA infection cycle in N. tabacum.
Resumo:
Marine species generally have large population sizes, continuous distributions and high dispersal capacity. Despite this, they are often subdivided into separate populations, which are the basic units of fisheries management. For example, populations of some fisheries species across the deep water of the Timor Trench are genetically different, inferring minimal movement and interbreeding. When connectivity is higher than the Timor Trench example, but not so high that the populations become one, connectivity between populations is crinkled. Crinkled connectivity occurs when migration is above the threshold required to link populations genetically, but below the threshold for demographic links. In future, genetic estimates of connectivity over crinkled links could be uniquely combined with other data, such as estimates of population size and tagging and tracking data, to quantify demographic connectedness between these types of populations. Elasmobranch species may be ideal targets for this research because connectivity between populations is more likely to be crinkled than for finfish species. Fisheries stock-assessment models could be strengthened with estimates of connectivity to improve the strategic and sustainable harvesting of biological resources.
Resumo:
Phosphine resistance alleles might be expected to negatively affect energy demanding activities such as walking and flying, because of the inverse relationship between phosphine resistance and respiration. We used an activity monitoring system to quantify walking of Rhyzopertha dominica (F.) and a flight chamber to estimate their propensity for flight initiation. No significant difference in the duration of walking was observed between the strongly resistant, weakly resistant, and susceptible strains of R. dominica we tested, and females walked significantly more than males regardless of genotype. The walking activity monitor revealed no pattern of movement across the day and no particular time of peak activity despite reports of peak activity of R. dominica and Tribolium castaneum (Herbst) under field conditions during dawn and dusk. Flight initiation was significantly higher for all strains at 28 degrees C and 55% relative humidity than at 25, 30, 32, and 35 degrees C in the first 24 h of placing beetles in the flight chamber. Food deprivation and genotype had no significant effect on flight initiation. Our results suggest that known resistance alleles in R. dominica do not affect insect mobility and should therefore not inhibit the dispersal of resistant insects in the field.