964 resultados para molecular model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the first steps of a collaborative project between the University of Queensland, Polyflow, Michelin, SK Chemicals, and RMIT University; on simulation, validation and application of a recently introduced constitutive model designed to describe branched polymers. Whereas much progress has been made on predicting the complex flow behaviour of many - in particular linear - polymers, it sometimes appears difficult to predict simultaneously shear thinning and extensional strain hardening behaviour using traditional constitutive models. Recently a new viscoelastic model based on molecular topology, was proposed by McLeish and Larson (1998). We explore the predictive power of a differential multi-mode version of the pom-pom model for the flow behaviour of two commercial polymer melts: a (long-chain branched) low-density polyethylene (LDPE) and a (linear) high-density polyethylene (HDPE). The model responses are compared to elongational recovery experiments published by Langouche and Debbaut (1999), and start-up of simple shear flow, stress relaxation after simple and reverse step strain experiments carried out in our laboratory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NMR spectroscopy and simulated annealing calculations have been used to determine the three-dimensional structure of NaD1, a novel antifungal and insecticidal protein isolated from the flowers of Nicotiana alata. NaD1 is a basic, cysteine-rich protein of 47 residues and is the first example of a plant defensin from flowers to be characterized structurally. Its three-dimensional structure consists of an a-helix and a triple-stranded anti-parallel beta-sheet that are stabilized by four intramolecular disulfide bonds. NaD1 features all the characteristics of the cysteine-stabilized up motif that has been described for a variety of proteins of differing functions ranging from antibacterial insect defensins and ion channel-perturbing scorpion toxins to an elicitor of the sweet taste response. The protein is biologically active against insect pests, which makes it a potential candidate for use in crop protection. NaD1 shares 31% sequence identity with alfAFP, an antifungal protein from alfalfa that confers resistance to a fungal pathogen in transgenic potatoes. The structure of NaD1 was used to obtain a homology model of alfAFP, since NaD1 has the highest level of sequence identity with alfAFP of any structurally characterized antifungal defensin. The structures of NaD1 and alfAFP were used in conjunction with structure - activity data for the radish defensin Rs-AFP2 to provide an insight into structure-function relationships. In particular, a putative effector site was identified in the structure of NaD1 and in the corresponding homology model of alfAFP. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulation of the transport of methane in cylindrical silica mesopores have been performed using equilibrium and nonequilibrium molecular dynamics (NEMD) as well as dual control volume grand canonical molecular dynamics methods. It is demonstrated that all three techniques yield the same transport coefficient even in the presence of viscous flow. A modified locally averaged density model for viscous flow, combined with consideration of wall slip through a frictional condition, gives a convincing interpretation of the variation of the transport coefficient over a wide range of densities, and for various pore sizes and temperatures. Wall friction coefficients extracted from NEMD simulations are found to be consistent with momentum transfer arguments, and the approach is shown to be more meaningful than the classical slip length concept. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indentation tests are used to determine the hardness of a material, e.g., Rockwell, Vickers, or Knoop. The indentation process is empirically observed in the laboratory during these tests; the mechanics of indentation is insufficiently understood. We have performed first molecular dynamics computer simulations of indentation resistance of polymers with a chain structure similar to that of high density polyethylene (HDPE). A coarse grain model of HDPE is used to simulate how the interconnected segments respond to an external force imposed by an indenter. Results include the time-dependent measurement of penetration depth, recovery depth, and recovery percentage, with respect to indenter force, indenter size, and indentation time parameters. The simulations provide results that are inaccessible experimentally, including continuous evolution of the pertinent tribological parameters during the entire indentation process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part replacement and repair is needed in structures with moving parts because of scratchability and wear. In spite of some accumulation of experimental evidence, scratch resistance is still not well understood. We have applied molecular dynamics to study scratch resistance of amorphous polymeric materials through computer simulations. As a first approach, a coarse grain model was created for high density polyethylene at the mesoscale. We have also extended the traditional approach and used real units rather than reduced units (to our knowledge, for the first time), which enable an improved quantification of simulation results. The obtained results include analysis of penetration depth, residual depth and recovery percentage related to indenter force and size. Our results show there is a clear effect from these parameters on the tribological properties. We also discuss a "crooked smile" effect on the scratched surface and the reasons for its appearance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Besnoitia besnoiti is an apicomplexan parasite responsible for bovine besnoitiosis, a disease with a high prevalence in tropical and subtropical regions and re-emerging in Europe. Despite the great economical losses associated with besnoitiosis, this disease has been underestimated and poorly studied, and neither an effective therapy nor an efficacious vaccine is available. Protein disulfide isomerase (PDI) is an essential enzyme for the acquisition of the correct three-dimensional structure of proteins. Current evidence suggests that in Neosporacaninum and Toxoplasmagondii, which are closely related to B. besnoiti, PDI play an important role in host cell invasion, is a relevant target for the host immune response, and represents a promising drug target and/or vaccine candidate. In this work, we present the nucleotide sequence of the B. besnoiti PDI gene. BbPDI belongs to the thioredoxin-like superfamily (cluster 00388) and is included in the PDI_a family (cluster defined cd02961) and the PDI_a_PDI_a'_c subfamily (cd02995). A 3D theoretical model was built by comparative homology using Swiss-Model server, using as a template the crystallographic deduced model of Tapasin-ERp57 (PDB code 3F8U chain C). Analysis of the phylogenetic tree for PDI within the phylum apicomplexa reinforces the close relationship among B. besnoiti, N. caninum and T. gondii. When subjected to a PDI-assay based on the polymerisation of reduced insulin, recombinant BbPDI expressed in E. coli exhibited enzymatic activity, which was inhibited by bacitracin. Antiserum directed against recombinant BbPDI reacted with PDI in Western blots and by immunofluorescence with B. besnoiti tachyzoites and bradyzoites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento, Ciências do Mar, especialidade de Biologia Marinha, 19 de Dezembro de 2015, Universidade dos Açores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The knowledge about typhoid fever pathogenesis is growing in the last years, mainly about the cellular and molecular phenomena that are responsible by clinical manifestations of this disease. In this article are discussed several recent discoveries, as follows: a) Bacterial type III protein secretion system; b) The five virulence genes of Salmonella spp. that encoding Sips (Salmonella invasion protein) A, B, C, D and E, which are capable of induce apoptosis in macrophages; c) The function of Toll R2 and Toll R4 receptors present in the macrophage surface (discovered in the Drosophila). The Toll family receptors are critical in the signalizing mediated by LPS in macrophages in association with LBP and CD14; d) The lines of immune defense between intestinal lumen and internal organs; e) The fundamental role of the endothelial cells in the inflammatory deviation from bloodstream into infected tissues by bacteria. In addition to above subjects, the authors comment the correlation between the clinical features of typhoid fever and the cellular and molecular phenomena of this disease, as well as the therapeutic consequences of this knowledge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strongyloides venezuelensis is a parasitic nematode of rats which is frequently used as a model to study human and animal strongyloidiasis. The aim of this study was to evaluate the correlation between parasitological and molecular diagnosis in Strongyloides venezuelensis infection. PCR assays were used to detect S. venezuelensis DNA in fecal samples obtained from experimentally infected Rattus norvegicus. The results showed a higher sensitivity of the PCR assay in detecting the infection compared to parasitological methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Hereditary hemochromatosis (HH) is a disease caused by mutations in the Hfe gene characterised by systemic iron overload and associated with an increased prevalence of osteoarthritis (OA) but the role of iron overload in the development of OA is still undefined. To further understand the molecular mechanisms involved we have used a murine model of HH and studied the progression of experimental OA under mechanical stress. DESIGN: OA was surgically induced in the knee joints of 10-week-old C57BL6 (wild-type) mice and Hfe-KO mice. OA progression was assessed using histology, micro CT, gene expression and immunohistochemistry at 8 weeks after surgery. RESULTS: Hfe-KO mice showed a systemic iron overload and an increased iron accumulation in the knee synovial membrane following surgery. The histological OA score was significantly higher in the Hfe-KO mice at 8 weeks after surgery. Micro CT study of the proximal tibia revealed increased subchondral bone volume and increased trabecular thickness. Gene expression and immunohistochemical analysis showed a significant increase in the expression of matrix metallopeptidase 3 (MMP-3) in the joints of Hfe-KO mice compared with control mice at 8 weeks after surgery. CONCLUSIONS: HH was associated with an accelerated development of OA in mice. Our findings suggest that synovial iron overload has a definite role in the progression of HH-related OA

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação apresentada para a obtenção do Grau de Mestre em Genética Molecular e Biomedicina, pela Universidade N ova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Química Sustentável

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis of molecular regulators involved in controlling the maintenance and function of plant meristems has been the subject of many studies. Some master regulators of these processes have been identified in Arabidopsis benefiting from the array of tools available for genetic and molecular analysis in this model plant. However, aspects such as secondary growth that are more extensively observed in woody plants, have been less studied. Secondary growth is responsible for the enlargement of the plant stems and roots and results from the activity of the lateral (secondary) meristems, vascular cambium and cork cambium (phellogen), which produce two important renewable natural resources, wood and cork, respectively.(...)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is divided into two distinct parts. The first part consists of the study of the metal organic framework UiO-66Zr, where the aim was to determine the force field that best describes the adsorption equilibrium properties of two different gases, methane and carbon dioxide. The other part of the work focuses on the study of the single wall carbon nanotube topology for ethane adsorption; the aim was to simplify as much as possible the solid-fluid force field model to increase the computational efficiency of the Monte Carlo simulations. The choice of both adsorbents relies on their potential use in adsorption processes, such as the capture and storage of carbon dioxide, natural gas storage, separation of components of biogas, and olefin/paraffin separations. The adsorption studies on the two porous materials were performed by molecular simulation using the grand canonical Monte Carlo (μ,V,T) method, over the temperature range of 298-343 K and pressure range 0.06-70 bar. The calibration curves of pressure and density as a function of chemical potential and temperature for the three adsorbates under study, were obtained Monte Carlo simulation in the canonical ensemble (N,V,T); polynomial fit and interpolation of the obtained data allowed to determine the pressure and gas density at any chemical potential. The adsorption equilibria of methane and carbon dioxide in UiO-66Zr were simulated and compared with the experimental data obtained by Jasmina H. Cavka et al. The results show that the best force field for both gases is a chargeless united-atom force field based on the TraPPE model. Using this validated force field it was possible to estimate the isosteric heats of adsorption and the Henry constants. In the Grand-Canonical Monte Carlo simulations of carbon nanotubes, we conclude that the fastest type of run is obtained with a force field that approximates the nanotube as a smooth cylinder; this approximation gives execution times that are 1.6 times faster than the typical atomistic runs.