311 resultados para modis
Resumo:
Land cover maps at different resolutions and mapping extents contribute to modeling and support decision making processes. Because land cover affects and is affected by climate change, it is listed among the 13 terrestrial essential climate variables. This paper describes the generation of a land cover map for Latin America and the Caribbean (LAC) for the year 2008. It was developed in the framework of the project Latin American Network for Monitoring and Studying of Natural Resources (SERENA), which has been developed within the GOFC-GOLD Latin American network of remote sensing and forest fires (RedLaTIF). The SERENA land cover map for LAC integrates: 1) the local expertise of SERENA network members to generate the training and validation data, 2) a methodology for land cover mapping based on decision trees using MODIS time series, and 3) class membership estimates to account for pixel heterogeneity issues. The discrete SERENA land cover product, derived from class memberships, yields an overall accuracy of 84% and includes an additional layer representing the estimated per-pixel confidence. The study demonstrates in detail the use of class memberships to better estimate the area of scarce classes with a scattered spatial distribution. The land cover map is already available as a printed wall map and will be released in digital format in the near future. The SERENA land cover map was produced with a legend and classification strategy similar to that used by the North American Land Change Monitoring System (NALCMS) to generate a land cover map of the North American continent, that will allow to combine both maps to generate consistent data across America facilitating continental monitoring and modeling
Resumo:
To analyze patterns in marine productivity, harmful algal blooms, thermal stress in coral reefs, and oceanographic processes, optical and biophysical marine parameters, such as sea surface temperature, and ocean color products, such as chlorophyll-a concentration, diffuse attenuation coefficient, total suspended matter concentration, chlorophyll fluorescence line height, and remote sensing reflectance, are required. In this paper we present a novel automatic Satellite-based Ocean Monitoring System (SATMO) developed to provide, in near real-time, continuous spatial data sets of the above-mentioned variables for marine-coastal ecosystems in the Gulf of Mexico, northeastern Pacific Ocean, and western Caribbean Sea, with 1 km spatial resolution. The products are obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) images received at the Direct Readout Ground Station (located at CONABIO) after each overpass of the Aqua and Terra satellites. In addition, at the end of each week and month the system provides composite images for several ocean products, as well as weekly and monthly anomaly composites for chlorophyll-a concentration and sea surface temperature. These anomaly data are reported for the first time for the study region and represent valuable information for analyzing time series of ocean color data for the study of coastal and marine ecosystems in Mexico, Central America, and the western Caribbean.
Resumo:
Land surface albedo, a key parameter to derive Earth's surface energy balance, is used in the parameterization of numerical weather prediction, climate monitoring and climate change impact assessments. Changes in albedo due to fire have not been fully investigated on a continental and global scale. The main goal of this study, therefore, is to quantify the changes in instantaneous shortwave albedo produced by biomass burning activities and their associated radiative forcing. The study relies on the MODerate-resolution Imaging Spectroradiometer (MODIS) MCD64A1 burned-area product to create an annual composite of areas affected by fire and the MCD43C2 bidirectional reflectance distribution function (BRDF) albedo snow-free product to compute a bihemispherical reflectance time series. The approximate day of burning is used to calculate the instantaneous change in shortwave albedo. Using the corresponding National Centers for Environmental Prediction (NCEP) monthly mean downward solar radiation flux at the surface, the global radiative forcing associated with fire was computed. The analysis reveals a mean decrease in shortwave albedo of −0.014 (1σ = 0.017), causing a mean positive radiative forcing of 3.99 Wm−2 (1σ = 4.89) over the 2002–20012 time period in areas affected by fire. The greatest drop in mean shortwave albedo change occurs in 2002, which corresponds to the highest total area burned (378 Mha) observed in the same year and produces the highest mean radiative forcing (4.5 Wm−2). Africa is the main contributor in terms of burned area, but forests globally give the highest radiative forcing per unit area and thus give detectable changes in shortwave albedo. The global mean radiative forcing for the whole period studied (~0.0275 Wm−2) shows that the contribution of fires to the Earth system is not insignificant.
Resumo:
Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000–2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October–January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo–Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of secondary inorganic aerosol are suppressed in the models because relative humidity (RH) is biased far too low in the boundary layer and thus foggy conditions are poorly represented in current models, the nitrate aerosol is either missing or inadequately accounted for, and emissions from agricultural waste burning and biofuel usage are too low in the emission inventories. These common problems and possible causes found in multiple models point out directions for future model improvements in this important region.
Resumo:
This article presents SPARE-ICE, the Synergistic Passive Atmospheric Retrieval Experiment-ICE. SPARE-ICE is the first Ice Water Path (IWP) product combining infrared and microwave radiances. By using only passive operational sensors, the SPARE-ICE retrieval can be used to process data from at least the NOAA 15 to 19 and MetOp satellites, obtaining time series from 1998 onward. The retrieval is developed using collocations between passive operational sensors (solar, terrestrial infrared, microwave), the CloudSat radar, and the CALIPSO lidar. The collocations form a retrieval database matching measurements from passive sensors against the existing active combined radar-lidar product 2C-ICE. With this retrieval database, we train a pair of artificial neural networks to detect clouds and retrieve IWP. When considering solar, terrestrial infrared, and microwave-based measurements, we show that any combination of two techniques performs better than either single-technique retrieval. We choose not to include solar reflectances in SPARE-ICE, because the improvement is small, and so that SPARE-ICE can be retrieved both daytime and nighttime. The median fractional error between SPARE-ICE and 2C-ICE is around a factor 2, a figure similar to the random error between 2C-ICE ice water content (IWC) and in situ measurements. A comparison of SPARE-ICE with Moderate Resolution Imaging Spectroradiometer (MODIS), Pathfinder Atmospheric Extended (PATMOS-X), and Microwave Surface and Precipitation Products System (MSPPS) indicates that SPARE-ICE appears to perform well even in difficult conditions. SPARE-ICE is available for public use.
Resumo:
There remains large disagreement between ice-water path (IWP) in observational data sets, largely because the sensors observe different parts of the ice particle size distribution. A detailed comparison of retrieved IWP from satellite observations in the Tropics (!30 " latitude) in 2007 was made using collocated measurements. The radio detection and ranging(radar)/light detection and ranging (lidar) (DARDAR) IWP data set, based on combined radar/lidar measurements, is used as a reference because it provides arguably the best estimate of the total column IWP. For each data set, usable IWP dynamic ranges are inferred from this comparison. IWP retrievals based on solar reflectance measurements, in the moderate resolution imaging spectroradiometer (MODIS), advanced very high resolution radiometer–based Climate Monitoring Satellite Applications Facility (CMSAF), and Pathfinder Atmospheres-Extended (PATMOS-x) datasets, were found to be correlated with DARDAR over a large IWP range (~20–7000 g m -2 ). The random errors of the collocated data sets have a close to lognormal distribution, and the combined random error of MODIS and DARDAR is less than a factor of 2, which also sets the upper limit for MODIS alone. In the same way, the upper limit for the random error of all considered data sets is determined. Data sets based on passive microwave measurements, microwave surface and precipitation products system (MSPPS), microwave integrated retrieval system (MiRS), and collocated microwave only (CMO), are largely correlated with DARDAR for IWP values larger than approximately 700 g m -2 . The combined uncertainty between these data sets and DARDAR in this range is slightly less MODIS-DARDAR, but the systematic bias is nearly an order of magnitude.
Resumo:
This study analyses the influence of vegetation structure (i.e. leaf area index and canopy cover) and seasonal background changes on moderate-resolution imaging spectrometer (MODIS)-simulated reflectance data in open woodland. Approximately monthly spectral reflectance and transmittance field measurements (May 2011 to October 2013) of cork oak tree leaves (Quercus suber) and of the herbaceous understorey were recorded in the region of Ribatejo, Portugal. The geometric-optical and radiative transfer (GORT) model was used to simulate MODIS response (red, near-infrared) and to calculate vegetation indices, investigating their response to changes in the structure of the overstorey vegetation and to seasonal changes in the understorey using scenarios corresponding to contrasting phenological status (dry season vs. wet season). The performance of normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and enhanced vegetation index (EVI) is discussed. Results showed that SAVI and EVI were very sensitive to the emergence of background vegetation in the wet season compared to NDVI and that shading effects lead to an opposing trend in the vegetation indices. The information provided by this research can be useful to improve our understanding of the temporal dynamic of vegetation, monitored by vegetation indices.
Resumo:
Previous versions of the Consortium for Small-scale Modelling (COSMO) numerical weather prediction model have used a constant sea-ice surface temperature, but observations show a high degree of variability on sub-daily timescales. To account for this, we have implemented a thermodynamic sea-ice module in COSMO and performed simulations at a resolution of 15 km and 5 km for the Laptev Sea area in April 2008. Temporal and spatial variability of surface and 2-m air temperature are verified by four automatic weather stations deployed along the edge of the western New Siberian polynya during the Transdrift XIII-2 expedition and by surface temperature charts derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. A remarkable agreement between the new model results and these observations demonstrates that the implemented sea-ice module can be applied for short-range simulations. Prescribing the polynya areas daily, our COSMO simulations provide a high-resolution and high-quality atmospheric data set for the Laptev Sea for the period 14-30 April 2008. Based on this data set, we derive a mean total sea-ice production rate of 0.53 km3/day for all Laptev Sea polynyas under the assumption that the polynyas are ice-free and a rate of 0.30 km3/day if a 10-cm-thin ice layer is assumed. Our results indicate that ice production in Laptev Sea polynyas has been overestimated in previous studies.
Resumo:
We test the ability of a two-dimensional flux model to simulate polynya events with narrow open-water zones by comparing model results to ice-thickness and ice-production estimates derived from thermal infrared Moderate Resolution Imaging Spectroradiometer (MODIS) observations in conjunction with an atmospheric dataset. Given a polynya boundary and an atmospheric dataset, the model correctly reproduces the shape of an 11 day long event, using only a few simple conservation laws. Ice production is slightly overestimated by the model, owing to an underestimated ice thickness. We achieved best model results with the consolidation thickness parameterization developed by Biggs and others (2000). Observed regional discrepancies between model and satellite estimates might be a consequence of the missing representation of the dynamic of the thin-ice thickening (e.g. rafting). We conclude that this simplified polynya model is a valuable tool for studying polynya dynamics and estimating associated fluxes of single polynya events.
Resumo:
This paper describes new advances in the exploitation of oxygen A-band measurements from POLDER3 sensor onboard PARASOL, satellite platform within the A-Train. These developments result from not only an account of the dependence of POLDER oxygen parameters to cloud optical thickness τ and to the scene's geometrical conditions but also, and more importantly, from the finer understanding of the sensitivity of these parameters to cloud vertical extent. This sensitivity is made possible thanks to the multidirectional character of POLDER measurements. In the case of monolayer clouds that represent most of cloudy conditions, new oxygen parameters are obtained and calibrated from POLDER3 data colocalized with the measurements of the two active sensors of the A-Train: CALIOP/CALIPSO and CPR/CloudSat. From a parameterization that is (μs, τ) dependent, with μs the cosine of the solar zenith angle, a cloud top oxygen pressure (CTOP) and a cloud middle oxygen pressure (CMOP) are obtained, which are estimates of actual cloud top and middle pressures (CTP and CMP). Performances of CTOP and CMOP are presented by class of clouds following the ISCCP classification. In 2008, the coefficient of the correlation between CMOP and CMP is 0.81 for cirrostratus, 0.79 for stratocumulus, 0.75 for deep convective clouds. The coefficient of the correlation between CTOP and CTP is 0.75, 0.73, and 0.79 for the same cloud types. The score obtained by CTOP, defined as the confidence in the retrieval for a particular range of inferred value and for a given error, is higher than the one of MODIS CTP estimate. Scores of CTOP are the highest for bin value of CTP superior in numbers. For liquid (ice) clouds and an error of 30 hPa (50 hPa), the score of CTOP reaches 50% (70%). From the difference between CTOP and CMOP, a first estimate of the cloud vertical extent h is possible. A second estimate of h comes from the correlation between the angular standard deviation of POLDER oxygen pressure σPO2 and the cloud vertical extent. This correlation is studied in detail in the case of liquid clouds. It is shown to be spatially and temporally robust, except for clouds above land during winter months. The analysis of the correlation's dependence on the scene's characteristics leads to a parameterization providing h from σPO2. For liquid water clouds above ocean in 2008, the mean difference between the actual cloud vertical extent and the one retrieved from σPO2 (from the pressure difference) is 5 m (−12 m). The standard deviation of the mean difference is close to 1000 m for the two methods. POLDER estimates of the cloud geometrical thickness obtain a global score of 50% confidence for a relative error of 20% (40%) of the estimate for ice (liquid) clouds over ocean. These results need to be validated outside of the CALIPSO/CloudSat track.
Resumo:
Considering the sea ice decline in the Arctic during the last decades, polynyas are of high research interest since these features are core areas of new ice formation. The determination of ice formation requires accurate retrieval of polynya area and thin-ice thickness (TIT) distribution within the polynya.We use an established energy balance model to derive TITs with MODIS ice surface temperatures (Ts) and NCEP/DOE Reanalysis II in the Laptev Sea for two winter seasons. Improvements of the algorithm mainly concern the implementation of an iterative approach to calculate the atmospheric flux components taking the atmospheric stratification into account. Furthermore, a sensitivity study is performed to analyze the errors of the ice thickness. The results are the following: 1) 2-m air temperatures (Ta) and Ts have the highest impact on the retrieved ice thickness; 2) an overestimation of Ta yields smaller ice thickness errors as an underestimation of Ta; 3) NCEP Ta shows often a warm bias; and 4) the mean absolute error for ice thicknesses up to 20 cm is ±4.7 cm. Based on these results, we conclude that, despite the shortcomings of the NCEP data (coarse spatial resolution and no polynyas), this data set is appropriate in combination with MODIS Ts for the retrieval of TITs up to 20 cm in the Laptev Sea region. The TIT algorithm can be applied to other polynya regions and to past and future time periods. Our TIT product is a valuable data set for verification of other model and remote sensing ice thickness data.
Resumo:
Ensemble simulations of a regional climate model (RegCM3) forced by aerosol radiative forcing suggest that biomass burning aerosols can work against the seasonal monsoon circulation transition, thus re-enforce the dry season rainfall pattern for Southern Amazonia. Strongly absorbing smoke aerosols warm and stabilize the lower troposphere within the smoke center in southern Amazonia (where aerosol optical depth >0.3). These changes increase the surface pressure in the smoke center, weaken the southward surface pressure gradient between northern and southern Amazonia, and consequently induce an anomalous moisture divergence in the smoke center and an anomalous convergence in northwestern Amazonia (5 degrees S-5 degrees N, 60 degrees W-70 degrees W). The increased atmospheric thermodynamic stability, surface pressure, and divergent flow in Southern Amazonia may inhibit synoptic cyclonic activities propagated from extratropical South America, and re-enforce winter-like synoptic cyclonic activities and rainfall in southeastern Brazil, Paraguay and northeastern Argentina. Citation: Zhang, Y., R. Fu, H. Yu, Y. Qian, R. Dickinson, M. A. F. Silva Dias, P. L. da Silva Dias, and K. Fernandes (2009), Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia, Geophys. Res. Lett., 36, L10814, doi: 10.1029/2009GL037180.
Resumo:
Microwave remote sensing has high potential for soil moisture retrieval. However, the efficient retrieval of soil moisture depends on optimally choosing the soil moisture retrieval parameters. In this study first the initial evaluation of SMOS L2 product is performed and then four approaches regarding soil moisture retrieval from SMOS brightness temperature are reported. The radiative transfer equation based tau-omega rationale is used in this study for the soil moisture retrievals. The single channel algorithms (SCA) using H polarisation is implemented with modifications, which includes the effective temperatures simulated from ECMWF (downscaled using WRF-NOAH Land Surface Model (LSM)) and MODIS. The retrieved soil moisture is then utilized for soil moisture deficit (SMD) estimation using empirical relationships with Probability Distributed Model based SMD as a benchmark. The square of correlation during the calibration indicates a value of R2 =0.359 for approach 4 (WRF-NOAH LSM based LST with optimized roughness parameters) followed by the approach 2 (optimized roughness parameters and MODIS based LST) (R2 =0.293), approach 3 (WRF-NOAH LSM based LST with no optimization) (R2 =0.267) and approach 1(MODIS based LST with no optimization) (R2 =0.163). Similarly, during the validation a highest performance is reported by approach 4. The other approaches are also following a similar trend as calibration. All the performances are depicted through Taylor diagram which indicates that the H polarisation using ECMWF based LST is giving a better performance for SMD estimation than the original SMOS L2 products at a catchment scale.
Resumo:
The objective of this study is to develop a Pollution Early Warning System (PEWS) for efficient management of water quality in oyster harvesting areas. To that end, this paper presents a web-enabled, user-friendly PEWS for managing water quality in oyster harvesting areas along Louisiana Gulf Coast, USA. The PEWS consists of (1) an Integrated Space-Ground Sensing System (ISGSS) gathering data for environmental factors influencing water quality, (2) an Artificial Neural Network (ANN) model for predicting the level of fecal coliform bacteria, and (3) a web-enabled, user-friendly Geographic Information System (GIS) platform for issuing water pollution advisories and managing oyster harvesting waters. The ISGSS (data acquisition system) collects near real-time environmental data from various sources, including NASA MODIS Terra and Aqua satellites and in-situ sensing stations managed by the USGS and the NOAA. The ANN model is developed using the ANN program in MATLAB Toolbox. The ANN model involves a total of 6 independent environmental variables, including rainfall, tide, wind, salinity, temperature, and weather type along with 8 different combinations of the independent variables. The ANN model is constructed and tested using environmental and bacteriological data collected monthly from 2001 – 2011 by Louisiana Molluscan Shellfish Program at seven oyster harvesting areas in Louisiana Coast, USA. The ANN model is capable of explaining about 76% of variation in fecal coliform levels for model training data and 44% for independent data. The web-based GIS platform is developed using ArcView GIS and ArcIMS. The web-based GIS system can be employed for mapping fecal coliform levels, predicted by the ANN model, and potential risks of norovirus outbreaks in oyster harvesting waters. The PEWS is able to inform decision-makers of potential risks of fecal pollution and virus outbreak on a daily basis, greatly reducing the risk of contaminated oysters to human health.
Resumo:
This paper presents models of parameters of Sea Surface Layer (SSL), such as chlorophyll-a, sea surface temperature (SST), Primary Productivity (PP) and Total Suspended Matter (TSM) for the region adjacent to the continental shelf of Rio Grande do Norte (RN), Brazil. Concentrations of these parameters measured in situ were compared in time quasi-synchronous with images AQUA-MODIS between the years 2003 to 2011. Determination coefficients between samples in situ and bands reflectance sensor AQUA-MODIS were representative. From that, concentrations of SSL parameters were acquired for the continental shelf of the RN (eastern and northern) analyzing the geographic distribution of variation of these parameters between the years 2009-2012. Geographical and seasonal variations mainly influenced by global climate phenomena such as El Niño and La Niña, were found through the analysis of AQUA-MODIS images by Principal Components Analysis (PCA). Images show qualitatively the variance and availability of TSM in the regions, as well as their relationship with coastal erosion hotspots, monitored along the coast of the RN. In one of the areas identified as being of limited availability of TSM, we developed a methodology for assessment and evaluation of Digital Elevation Models (DEM) of beach surfaces (emerged and submerged sections) from the integration of topographic and bathymetric data measured in situ and accurately georeferenced compatible to studies of geomorphology and coastal dynamics of short duration. The methodology consisted of surveys with GNSS positioning operated in cinematic relative mode involved in topographic and bathymetric executed in relation to the stations of the geodetic network of the study area, which provided geodetic link to the Brazilian Geodetic System (GBS), univocal , fixed, and relatively stable over time. In this study Ponta Negra Beach, Natal / RN, was identified as a region with low variance and availability of MPS in the region off, as characterized by intense human occupation and intense coastal erosion in recent decades, which presents potential of the proposed methodology for accuracy and productivity, and the progress achieved in relation to the classical methods of surveying beach profiles