960 resultados para micro-electron capture detection
Resumo:
Detection of rotavirus RNA by polyacrylamide gel electrophoresis (PAGE) proved to be a highly sensitive and rapid diagnostic test. A comparison of this assay with immuno-electron microscopy (IEM) and enzyme immunoassay (EIA) in 245 faeces from children with gastroenteritis revealed complete agreement between the three assays in 238 (97.14%) samples. Among 75 samples positive in at least one of the three assays, negative results were observed in 5 (6.48%) by PAGE, in 6 (6.76%) by EIA and in none by IEM. Silver staining greatly increased the sensitivity of the PAGE assay. We conclude that although IEM remains the most sensitive and rapid rotavirus diagnostic assay, the PAGE technique has many advantages in its favour, including the non-requirement of expensive equipment, the use of only chemically defined reagents and the capacity to distinguish virus subgroup and variants and to detect non-crossreactive rotaviruses which are missed in serological assays.
Resumo:
Conjugates of goat anti-HBs IgG and horseradish peroxidase (HRP) prepared by two different methods, one using NaIO4 and the other SPDP, were compared. Anti-HBs antibodies obtained from goat, rabbit and guinea-pig were tested as capture serum. The ELISA showed a sensitivity similar to RIA and a level of antigen captation ranging from 4.37 to 8.75 nanograms/ml was obtained when rabbit or guinea-pig captures were used combined with both NaIO4 or SPDP conjugates.
Resumo:
A virus antigenic characterization methodology using an indirect method of antibody detection ELISA with virus-infected cultured cells as antigen and a micro virus neutralisation test using EIA (NT-EIA) as an aid to reading were used for antigenic characterization of Jatobal (BeAn 423380). Jatobal virus was characterized as a Bunyaviridae, Bunyavirus genus, Simbu serogroup virus. ELISA using infected cultured cells as antigen is a sensitive and reliable method for identification of viruses and has many advantages over conventional antibody capture ELISA's and other tests: it eliminates solid phase coating with virus and laborious antigen preparation; it permits screening of large numbers of virus antisera faster and more easily than by CF, HAI, or plaque reduction NT. ELISA and NT using EIA as an aid to reading can be applicable to viruses which do not produce cytopathogenic effect. Both techniques are applicable to identification of viruses which grow in mosquito cells.
Resumo:
This paper presents the evaluation of an enzyme immunoassay in which Mayaro virus-infected cultured cells ara used as antigen (EIA-ICC) and an IgM antibody capture ELISA (MAC-ELISA) for Mayaro serologic diagnosis using 114 human sera obtained during a Mayaro outbreak occurred in Bolivia, in 1987. Results were compared with those obtained by haemagglutination-inhibition test (HAI). MAC-ELISA was the most sensitive technique for anti-Mayaro IgM detection. MAC-ELISA was twice sensitive as IgM EIA-ICC. The data shows that MAC-ELISA is a practical and valid technique for diagnosis of recent mayaro infection. IgG-ICC showed hight sensitivity and high specificity compared to HAI. The combination of anti-Mayaro IgG and IgM EIA-ICC results presented the highest sensitivity of the study. Anti-Mayaro IgG and IgM simultaneous detection by ELISA-ICC can be used for recent infection diagnosis (in spite of a less sensitive IgM detection than by MAC-ELISA), for surveillance and sero-epidemiologic studies, and for studies of IgG and IgM responses to Mayaro infection.
Resumo:
Aujourd'hui, les problèmes des maladies infectieuses concernent l'émergence d'infections difficiles à traiter, telles que les infections associées aux implants et les infections fongiques invasives chez les patients immunodéprimés. L'objectif de cette thèse était de développer des stratégies pour l'éradication des biofilms bactériens (partie 1), ainsi que d'étudier des méthodes innovantes pour la détection microbienne, pour l'établissement de nouveaux tests de sensibilité (partie 2). Le traitement des infections associées aux implants est difficile car les biofilms bactériens peuvent résister à des niveaux élevés d'antibiotiques. A ce jour, il n'y a pas de traitement optimal défini contre des infections causées par des bactéries de prévalence moindre telles que Enterococcus faecalis ou Propionibacterium acnés. Dans un premier temps, nous avons démontré une excellente activité in vitro de la gentamicine sur une souche de E. faecalis en phase stationnaire de croissance Nous avons ensuite confirmé l'activité de la gentamicine sur un biofilm précoce en modèle expérimental animal à corps étranger avec un taux de guérison de 50%. De plus, les courbes de bactéricidie ainsi que les résultats de calorimétrie ont prouvé que l'ajout de gentamicine améliorait l'activité in vitro de la daptomycine, ainsi que celle de la vancomycine. In vivo, le schéma thérapeutique le plus efficace était l'association daptomycine/gentamicine avec un taux de guérison de 55%. En établissant une nouvelle méthode pour l'évaluation de l'activité des antimicrobiens vis-à-vis de micro-organismes en biofilm, nous avons démontré que le meilleur antibiotique actif sur les biofilms à P. acnés était la rifampicine, suivi par la penicilline G, la daptomycine et la ceftriaxone. Les études conduites en modèle expérimental animal ont confirmé l'activité de la rifampicine seule avec un taux de guérison 36%. Le meilleur schéma thérapeutique était au final l'association rifampicine/daptomycine avec un taux de guérison 63%. Les associations de rifampicine avec la vancomycine ou la levofloxacine présentaient des taux de guérisons respectivement de 46% et 25%. Nous avons ensuite étudié l'émergence in vitro de la résistance à la rifampicine chez P. acnés. Nous avons observé un taux de mutations de 10"9. La caractérisation moléculaire de la résistance chez les mutant-résistants a mis en évidence l'implication de 5 mutations ponctuelles dans les domaines I et II du gène rpoB. Ce type de mutations a déjà été décrit au préalable chez d'autres espèces bactériennes, corroborant ainsi la validité de nos résultats. La deuxième partie de cette thèse décrit une nouvelle méthode d'évaluation de l'efficacité des antifongiques basée sur des mesures de microcalorimétrie isotherme. En utilisant un microcalorimètre, la chaleur produite par la croissance microbienne peut être-mesurée en temps réel, très précisément. Nous avons évalué l'activité de l'amphotéricine B, des triazolés et des échinocandines sur différentes souches de Aspergillus spp. par microcalorimétrie. La présence d'amphotéricine Β ou de triazole retardait la production de chaleur de manière concentration-dépendante. En revanche, pour les échinochandines, seule une diminution le pic de « flux de chaleur » a été observé. La concordance entre la concentration minimale inhibitrice de chaleur (CMIC) et la CMI ou CEM (définie par CLSI M38A), avec une marge de 2 dilutions, était de 90% pour l'amphotéricine B, 100% pour le voriconazole, 90% pour le pozoconazole et 70% pour la caspofongine. La méthode a été utilisée pour définir la sensibilité aux antifongiques pour d'autres types de champignons filamenteux. Par détermination microcalorimétrique, l'amphotéricine B s'est avéré être l'agent le plus actif contre les Mucorales et les Fusarium spp.. et le voriconazole le plus actif contre les Scedosporium spp. Finalement, nous avons évalué l'activité d'associations d'antifongiques vis-à-vis de Aspergillus spp. Une meilleure activité antifongique était retrouvée avec l'amphotéricine B ou le voriconazole lorsque ces derniers étaient associés aux échinocandines vis-à-vis de A. fumigatus. L'association échinocandine/amphotéricine B a démontré une activité antifongique synergique vis-à-vis de A. terreus, contrairement à l'association échinocandine/voriconazole qui ne démontrait aucune amélioration significative de l'activité antifongique. - The diagnosis and treatment of infectious diseases are today increasingly challenged by the emergence of difficult-to-manage situations, such as infections associated with medical devices and invasive fungal infections, especially in immunocompromised patients. The aim of this thesis was to address these challenges by developing new strategies for eradication of biofilms of difficult-to-treat microorganisms (treatment, part 1) and investigating innovative methods for microbial detection and antimicrobial susceptibility testing (diagnosis, part 2). The first part of the thesis investigates antimicrobial treatment strategies for infections caused by two less investigated microorganisms, Enterococcus faecalis and Propionibacterium acnes, which are important pathogens causing implant-associated infections. The treatment of implant-associated infections is difficult in general due to reduced susceptibility of bacteria when present in biofilms. We demonstrated an excellent in vitro activity of gentamicin against E. faecalis in stationary growth- phase and were able to confirm the activity against "young" biofilms (3 hours) in an experimental foreign-body infection model (cure rate 50%). The addition of gentamicin improved the activity of daptomycin and vancomycin in vitro, as determined by time-kill curves and microcalorimetry. In vivo, the most efficient combination regimen was daptomycin plus gentamicin (cure rate 55%). Despite a short duration of infection, the cure rates were low, highlighting that enterococcal biofilms remain difficult to treat despite administration of newer antibiotics, such as daptomycin. By establishing a novel in vitro assay for evaluation of anti-biofilm activity (microcalorimetry), we demonstrated that rifampin was the most active antimicrobial against P. acnes biofilms, followed by penicillin G, daptomycin and ceftriaxone. In animal studies we confirmed the anti-biofilm activity of rifampin (cure rate 36% when administered alone), as well as in combination with daptomycin (cure rate 63%), whereas in combination with vancomycin or levofloxacin it showed lower cure rates (46% and 25%, respectively). We further investigated the emergence of rifampin resistance in P. acnes in vitro. Rifampin resistance progressively emerged during exposure to rifampin, if the bacterial concentration was high (108 cfu/ml) with a mutation rate of 10"9. In resistant isolates, five point mutations of the rpoB gene were found in cluster I and II, as previously described for staphylococci and other bacterial species. The second part of the thesis describes a novel real-time method for evaluation of antifungals against molds, based on measurements of the growth-related heat production by isothermal microcalorimetry. Current methods for evaluation of antifungal agents against molds, have several limitations, especially when combinations of antifungals are investigated. We evaluated the activity of amphotericin B, triazoles (voriconazole, posaconazole) and echinocandins (caspofungin and anidulafungin) against Aspergillus spp. by microcalorimetry. The presence of amphotericin Β or a triazole delayed the heat production in a concentration-dependent manner and the minimal heat inhibition concentration (MHIC) was determined as the lowest concentration inhibiting 50% of the heat produced at 48 h. Due to the different mechanism of action echinocandins, the MHIC for this antifungal class was determined as the lowest concentration lowering the heat-flow peak with 50%. Agreement within two 2-fold dilutions between MHIC and MIC or MEC (determined by CLSI M38A) was 90% for amphotericin B, 100% for voriconazole, 90% for posaconazole and 70% for caspofungin. We further evaluated our assay for antifungal susceptibility testing of non-Aspergillus molds. As determined by microcalorimetry, amphotericin Β was the most active agent against Mucorales and Fusarium spp., whereas voriconazole was the most active agent against Scedosporium spp. Finally, we evaluated the activity of antifungal combinations against Aspergillus spp. Against A. jumigatus, an improved activity of amphotericin Β and voriconazole was observed when combined with an echinocandin. Against A. terreus, an echinocandin showed a synergistic activity with amphotericin B, whereas in combination with voriconazole, no considerable improved activity was observed.
Resumo:
Detection of papillomavirus DNA in sity hybridization technique was perfomed in 29 symptomatic patients (6 males and 23 females) during the period of 1989-1991 at the Clinic for Sexually Transmitted Diseases, Universidade Federal Fluminense, State of rio de Janeiro. All the male patients had condyloma acuminata. Only HPV 6/11 were found in these lesions. Clinical features inthe female patients included vulvar condyloma acuminata, bowenoid populosis, flat cervical condyloma, cervical condyloma acuminatum and cervical intraepithelialneoplasia grade II (CIN II). We also found cases of condyloma acuminata associated to vulvar intraepithelial neoplasia grade III (VIN III), as well as to vaginal invasive carcinoma. HPV 6/11 and 16/18 were found in vulvar condyloma acuminata. Mixed infection by 6/11-16/18 HPV were also seen in these lesions as well as in the patient who had cervical condyloma acuminatum. HPV 16/18 were found in the condyloma acuminatum plus VIN III and in the CIN II lesions. We have found HPV31/33/51 in the specimen of condyloma acuminatum plus invasive carcinoma. In order to investigate the ultrastructural aspects of HPV infection in genital tissue, the biopsies of three female patients were observed under electron microscope.Mature virus particles were found in the cells of a condyloma acuminatum as wellas in the condyloma acuminatum plus invasive carcinoma case. In another sample, chromosome breakages were found in the nuclei of the infected cells although no viral particles were observed.
Resumo:
The ultrastructure of the membrane attack complex (MAC) of complement had been described as representing a hollow cylinder of defined dimensions that is composed of the proteins C5b, C6, C7, C8, and C9. After the characteristic cylindrical structure was identified as polymerized C9 [poly(C9)], the question arose as to the ultrastructural identity and topology of the C9-polymerizing complex C5b-8. An electron microscopic analysis of isolated MAC revealed an asymmetry of individual complexes with respect to their length. Whereas the length of one boundary (+/- SEM) was always 16 +/- 1 nm, the length of the other varied between 16 and 32 nm. In contrast, poly(C9), formed spontaneously from isolated C9, had a uniform tubule length (+/- SEM) of 16 +/- 1 nm. On examination of MAC-phospholipid vesicle complexes, an elongated structure was detected that was closely associated with the poly(C9) tubule and that extended 16-18 nm beyond the torus of the tubule and 28-30 nm above the membrane surface. The width of this structure varied depending on its two-dimensional projection in the electron microscope. By using biotinyl C5b-6 in the formation of the MAC and avidin-coated colloidal gold particles for the ultrastructural analysis, this heretofore unrecognized subunit of the MAC could be identified as the tetramolecular C5b-8 complex. Identification also was achieved by using anti-C5 Fab-coated colloidal gold particles. A similar elongated structure of 25 nm length (above the surface of the membrane) was observed on single C5b-8-vesicle complexes. It is concluded that the C5b-8 complex, which catalyzes poly(C9) formation, constitutes a structure of discrete morphology that remains as such identifiable in the fully assembled MAC, in which it is closely associated with the poly(C9) tubule.
Resumo:
This preliminary report describes human and cow cases of poxvirus that recently ocurred in the State of Rio de Janeiro. The electron microscopic findings were consistent with parapoxviral and orthopoxviral infection. Orthopoxvirus strains were isolated from human and cow cases. Detailed viral characterization by means of genetical techniques is under investigation. Based on these informations, poxviral diseases should be also considered an emerging viral zoonosis that can affect human beings.
Resumo:
The present study developed and standardized an enzime-linked immunosorbent assay (ELISA) to detect Giardia antigen in feces using rabbit polyclonal antibodies. Giardia cysts were purified from human fecal samples by sucrose and percoll gradients. Gerbils (Meriones unguiculatus) were infected to obtain trophozoites. Rabbits were inoculated with either cyst or trophozoite antigens of 14 Colombian Giardia isolates to develop antibodies against the respective stages. The IgG anti-Giardia were purified by sequential caprylic acid and ammonium sulfate precipitation. A portion of these polyclonal antibodies was linked to alkaline phosphatase (conjugate). One hundred and ninety six samples of human feces, from different patients, were tested by parasitologic diagnosis: 69 were positive for Giardia cysts, 56 had no Giardia parasites, and 71 revealed parasites other than Giardia. The optimal concentration of polyclonal antibodies for antigen capture was 40 µg/ml and the optimal conjugate dilution was 1:100. The absorbance cut-off value was 0.24. The parameters of the ELISA test for Giardia antigen detection were: sensitivity, 100% (95% CI: 93.4-100%); specificity, 95% (95% CI: 88.6-97.6%); positive predictive value, 91% (95% CI: 81.4-95.9%); and negative predictive value, 100% (95% CI: 96.1-100%). This ELISA will improve the diagnosis of Giardia infections in Colombia and will be useful in following patients after treatment.
Resumo:
Strains of enterotoxigenic Escherichia coli (ETEC) are responsible for significant rates of morbidity and mortality among children, particularly in developing countries. The majority of clinical and public health laboratories are capable of isolating and identifying Salmonella, Shigella, Campylobacter, and Escherichia coli O157:H7 from stool samples, but ETEC cannot be identified by routine methods. The method most often used to identify ETEC is polymerase chain reaction for heat-stable and heat-labile enterotoxin genes, and subsequent serotyping, but most clinical and public health laboratories do not have the capacity or resources to perform these tests. In this study, polyclonal rabbit and monoclonal mouse IgG2b antibodies against ETEC heat-labile toxin-I (LT) were characterized and the potential applicability of a capture assay was analyzed. IgG-enriched fractions from rabbit polyclonal and the IgG2b monoclonal antibodies recognized LT in a conformational shape and they were excellent tools for detection of LT-producing strains. These findings indicate that the capture immunoassay could be used as a diagnostic assay of ETEC LT-producing strains in routine diagnosis and in epidemiological studies of diarrhea in developing countries as enzyme linked immunosorbent assay techniques remain as effective and economical choice for the detection of specific pathogen antigens in cultures.
Resumo:
A study was carried out to evaluate the presence of serological markers for the immunodiagnosis of the vertical transmission of toxoplasmosis. We tested the sensitivity, specificity and predictive values (positive and negative) of different serological methods for the early diagnosis of congenital toxoplasmosis. In a prospective longitudinal study, 50 infants with suspected congenital toxoplasmosis were followed up in the ambulatory care centre of Congenital Infections at University Hospital in Goiânia, Goiás, Brazil, from 1 January 2004-30 September 2005. Microparticle Enzyme Immunoassay (MEIA), Enzyme-Linked Fluorescent Assay (ELFA) and Immune-Fluorescent Antibody Technique (IFAT) were used to detect specific IgM anti-Toxoplasma gondii antibodies and a capture ELISA was used to detect specific IgA antibodies. The results showed that 28/50 infants were infected. During the neonatal period, IgM was detected in 39.3% (11/28) of those infected infants and IgA was detected in 21.4% (6/28). The sensitivity, specificity and predictive values (positive and negative) of each assay were, respectively: MEIA and ELFA: 60.9%, 100%, 100%, 55.0%; IFAT: 59.6%, 91.7%, 93.3%, 53.7%; IgA capture ELISA: 57.1%, 100%, 100%, 51.2%. The presence of specific IgM and IgA antibodies during the neonatal period was not frequent, although it was correlated with the most severe cases of congenital transmission. The results indicate that the absence of congenital disease markers (IgM and IgA) in newborns, even after confirming the absence with several techniques, does not constitute an exclusion criterion for toxoplasmosis.
Resumo:
In this study, a genotypification of Leishmaniawas performed using polimerase chain reaction-restriction fragment length polymorfism (PCR-RFLP) and sequencing techniques to identify species of Leishmaniaparasites in phlebotomine sand flies and dogs naturally infected. Between January-February of 2009, CDC light traps were used to collect insect samples from 13 capture sites in the municipality of Posadas, which is located in the province of Misiones of Argentina. Sand flies identified as Lutzomyia longipalpiswere grouped into 28 separate pools for molecular biological analysis. Canine samples were taken from lymph node aspirates of two symptomatic stray animals that had been positively diagnosed with canine visceral leishmaniasis. One vector pool of 10 sand flies (1 out of the 28 pools tested) and both of the canine samples tested positively for Leishmania infantumby PCR and RFLP analysis. PCR products were confirmed by sequencing and showed a maximum identity with L. infantum. Given that infection was detected in one out of the 28 pools and that at least one infected insect was infected, it was possible to infer an infection rate at least of 0.47% for Lu. longipalpisamong the analyzed samples. These results contribute to incriminate Lu. longipalpis as the vector of L. infantumin the municipality of Posadas, where cases of the disease in humans and dogs have been reported since 2005.
Resumo:
The aim of this paper is to evaluate the risks associated with the use of fake fingerprints on a livescan supplied with a method of liveness detection. The method is based on optical properties of the skin. The sensor uses several polarizations and illuminations to capture the information of the different layers of the human skin. These experiments also allow for the determination under which conditions the system is deceived and if there is an influence respectively of the nature of the fake, the mould used for the production or the individuals involved in the attack. These experiments showed that current multispectral sensors can be deceived by the use of fake fingerprints created with or without the cooperation of the subject. Fakes created from direct casts perform better than those produced by fakes created from indirect casts. The results showed that the success of the attack is influenced by two main factors. The first is the quality of the fakes, and by extension the quality of the original fingerprint. The second is the combination of the general patterns involved in the attacks since an appropriate combination can strongly increase the rates of successful attacks.
Resumo:
Not considered in the analytical model of the plant, uncertainties always dramatically decrease the performance of the fault detection task in the practice. To cope better with this prevalent problem, in this paper we develop a methodology using Modal Interval Analysis which takes into account those uncertainties in the plant model. A fault detection method is developed based on this model which is quite robust to uncertainty and results in no false alarm. As soon as a fault is detected, an ANFIS model is trained in online to capture the major behavior of the occurred fault which can be used for fault accommodation. The simulation results understandably demonstrate the capability of the proposed method for accomplishing both tasks appropriately
Resumo:
Mycoplasma hominis is a fastidious micro-organism causing genital and extragenital infections. We developed a specific real-time PCR that exhibits high sensitivity and low intrarun and interrun variabilities. When applied to clinical samples, this quantitative PCR allowed to confirm the role of M. hominis in three patients with severe extragenital infections.