906 resultados para methyl jasmonate
Resumo:
When rats were administered methyl isocyanate (MIC) by inhalation or subcutaneous route it produced severe hyperglycemia, clinical lactic acidosis, highly elevated plasma urea, and reduced plasma cholinesterase activity with unaltered erythrocytc acetyl cholinesterase activity. Irrespective of the route of administration, MIC also caused severe hypothermia, which was not ameliorated by prior administration of atropine sulphate. Acute toxic effects of MIC are essentially similar by either route except for the intensity of the effects
Resumo:
Methyl isocyanate (MIC) interaction with the rabbit erythrocyte membrane increased the fluidity of the membrane and decreased the osmotic fragility of erythrocytes both in vitro and in vivo in rabbits intoxicated with MIC subcutaneously. MIC inhibited both acetylcholinesterase (AChE) and adenosine triphosphatase (ATPase) activities of erythrocytes dose-dependently in vitro, while in vivo a decreased trend in ATPase activity with unaltered AChE activity was observed. MIC also caused significant decrease in plasma sodium level with corresponding increase in potassium level in rabbits. The observed effects are due to MIC, per se, as the hydrolysis products of MIC, methylamine and N,Nprime-dimethylurea did not affect the erythrocyte fluidity and enzymes activities both in vitro and in vivo while they increased the osmotic fragility of erythrocytes in vivo in rabbits administered subcutaneously in equimolar concentration to MIC dosage. Inhibition of Na+-K+-dependent ATPase with altered permeability to cations and also probably water transport of plasma membrane due to MIC interaction are envisaged.
Resumo:
In the title compound, C11H8N6O4S, the plane of the coumarin aromatic ring is twisted by 17.2 (2)degrees with respect to the plane of the azide group bound to the methylene substituent, whereas it is twisted by 83.2 (2)degrees to the plane of the azide attached to the sulfonyl group. The crystal structure is stabilized by weak C-H center dot center dot center dot O interactions, leading to the formation of dimers with R-2(2)(12) graph-set motifs. These dimers are further linked by weak S-O center dot center dot center dot pi and pi-pi contacts centroid-centroid distance = 3.765 (2) angstrom], leading to the formation of a layered structure.
Resumo:
The title hydrate, C27H23NO2 center dot H2O, features an almost planar quinoline residue (r.m.s. deviation = 0.015 angstrom) with the benzene dihedral angle = 63.80 (7)degrees] and chalcone C-C-C-O torsion angle = -103.38 (18)degrees] substituents twisted significantly out of its plane. The configuration about the C=C bond 1.340 (2) angstrom] is E. In the crystal, molecules related by the 21 symmetry operation are linked along the b axis via water molecules that form O-H center dot center dot center dot O-c and O-H center dot center dot center dot N-q hydrogen bonds (c = carbonyl and q = quinoline). A C-H center dot center dot center dot O interaction also occurs.
Crystal and Molecular Structure of Sclerophytin F Methyl Ether from the Soft Coral Cladiella krempfi
Resumo:
new cembranoid diterpene was isolated from the soft coral Ckdiella h p f ifrom Minicoy Island (India), and its structure was established by X-ray crystallography to be sclerophytin F methyl ether (21 with the R absolute configuration at all six epimeric centers,assuming a configuration similar to that of sclerophytin C. Compound 2 may be an artifact of the isolation process.
Resumo:
The subcutaneous administration of methyl isocyanate (MIC) to female rabbits, resulted in significant increases in haemoglobin concentration, erythrocyte volume fraction and leucocyte number in blood, as well as plasma total proteins, and urea. The present study was designed to investigate whether the hydrolytic products of MIC, methylamine (MA) and N,N'-dimethylurea (DMU) play any role in eliciting these changes. Both MA and DMU administered subcutaneously in an equimolar dose to that of 1.0 LD50 MIC, 2.2 mmol kg-1, had no influence on these parameters, although there was a marginal increase in the plasma urea level shortly after the administration of DMU. This study establishes that the observed haematological and biochemical changes induced by MIC intoxication in rabbits are mostly due to MIC.
Resumo:
The temperature dependence of 1H spin-lattice relaxation time, T1, and that of the second moment, M2, are analysed in the temperature range 390 K to 77 K. A plot of T1 vs inverse temperature shows three phase transitions at 250 K, 167 K and 111 K. At 167 K, T1 displays a large jump while it shows changes in slope at 250 K and 111 K. In the high temperature phase (> 167 K), the correlated motion of CH3 and NH3 groups is found to cause the relaxation while their uncorrelated motion takes over in the low temperature phases (< 167 K). The unusual T1 behaviour in phase II (250 K-167 K) is ascribed to the small angle torsion of the cation. A constant M2 value of ∼ 9.7 G2, throughout the range of temperature studied, indicates the presence of reorientation of CH3 and NH3 groups.
Resumo:
Subcutaneous administration of the LD50 dose of methyl isocyanate (MIC) to rats induced severe hyperglycaemia, lactic acidosis and uraemia in rats. Neither methylamine (MA) nor N,N′-dimethylurea (DMU), the hydrolysis products of MIC, administered in equimolar doses had any influence on these parameters except for a marginal transient increase in plasma urea by DMU. Methyl isocyanate administration led to haemoconcentration, resulting in an increase in the plasma concentration of total proteins and a decrease in both the plasma concentration of albumin and the plasma cholinesterase activity. The hydrolysis products of MIC had no influence on any of these parameters. Thus, it seems reasonable to suggest that the systemic effects of MIC are caused by MIC per se, in spite of its high hydrolytic instability.
Resumo:
(I)Lantadene-B: C35H52O5,M r =552.80, MonoclinicC2,a=25.65(1),b=6.819(9),c=18.75(1) Å,beta=100.61(9),V=3223(5) Å3,Z=4,D x =1.14 g cm–3 CuKagr (lambda=1.5418A),mgr=5.5 cm–1,F(000)=1208,R=0.118,wR=0.132 for 1527 observed reflections withF o ge2sgr(F o ). (II)Lantadene-C: C35H54O5·CH3OH,Mr=586.85, Monoclinic,P21,a=9.822(3),b=10.909(3),c=16.120(8)Å,beta=99.82(4),V=1702(1)Å3,Z=2,D x =1.145 g cm–3, MoKagr (lambda=0.7107Å), mgr=0.708 cm–1 F(000)=644,R=0.098, wR=0.094 for 1073 observed reflections. The rings A, B, C, D, and E aretrans, trans, trans, cis fused and are in chair, chair, sofa, half-chair, chair conformations, respectively, in both the structures. In the unit cell the molecules are stabilized by O-HctdotO hydrogen bonds in both the structures, however an additional C-HctdotO interaction is observed in the case of Lantadene-C.
Resumo:
This paper reports the first study of the microstructure of a copolyperoxide by nuclear magnetic resonance spectroscopy. The copolyperoxides of styrene and methyl methacrylate (MMA) of various compositions have been synthesized. An analysis of the resonance signal of the backbone methylene protons gave the diad sequence probabilities which led to the calculation of the oxidative copolymerization reactivity ratios for styrene and MMA and the microstructural parameters like average chain length of the repeat unit sequences, run number, etc. The results point to the tendency of the SO1 and MO:! units to alternate in the chain. Compared to poly(styrene peroxide), the aromatic C1 seems to be stereosensitive in the terpolymers.
Resumo:
The supramolecular structures of eight aryl protected ethyl-6-methyl-4-phenyl-2-oxo-1,2,3,4-tetrahydropyrimidine- 5-carboxylates have been analyzed to determine the role of different functional groups on the molecular geometry, conformational characteristics and the packing of these molecules in the crystal lattice. Out of these the para fluoro substituted compound on the aryl ring exhibits conformational polymorphism, due to the different conformation of the ester moiety. This behaviour has been characterized using both powder and single-crystal X-ray diffraction, optical microscopy and differential scanning calorimetry performed on both these polymorphs. The compounds pack via the cooperative interplay of strong N-H center dot center dot center dot O=C intermolecular dimers and chains forming a sheet like structure. In addition, weak C-H center dot center dot center dot O=C and C-H center dot center dot center dot pi interactions impart additional stability to the crystal packing.
Resumo:
The subcutaneous administration of methyl isocyanate (MIC) in 1.0 LD50 dose in rats caused a significant effect on hepatic mitochondrial function only at complex I region of the respiratory chain. MIC administration at 1.0 LD50 dose also resulted in significant increases in malondialdehyde and ferrous ion concentration in liver mitochondria. It is suggested that the augmented lipid peroxidation in hepatic mitochondria, catalyzed by iron, possibly mobilized from intracellular stores leads to the inhibition of enzymes of mitochondrial respiration at complex I region, in vivo, in rats receiving a lethal dose of MIC subcutaneously.