935 resultados para methodologies for greenhouse gases emissions inventory and CO2 capture and storage
Resumo:
The inbound logistic for feeding the workstation inside the factory represents a critical issue in the car manufacturing industry. Nowadays, this issue is even more critical than in the past since more types of car are being produced in the assembly lines. Consequently, as workstations have to install many types of components, they also need to have an inventory of different types of the component in a compact space. The replenishment is a critical issue since a lack of inventory could cause line stoppage or reworking. On the other hand, an excess of inventory could increase the holding cost or even block the replenishment paths. The decision of the replenishment routes cannot be made without taking into consideration the inventory needed by each station during the production time which will depend on the production sequence. This problem deals with medium-sized instances and it is solved using online solvers. The contribution of this paper is a MILP for the replenishment and inventory of the components in a car assembly line.
Resumo:
Activated carbons prepared from petroleum pitch and using KOH as activating agent exhibit an excellent behavior in CO2 capture both at atmospheric (∼168 mg CO2/g at 298 K) and high pressure (∼1500 mg CO2/g at 298 K and 4.5 MPa). However, an exhaustive evaluation of the adsorption process shows that the optimum carbon structure, in terms of adsorption capacity, depends on the final application. Whereas narrow micropores (pores below 0.6 nm) govern the sorption behavior at 0.1 MPa, large micropores/small mesopores (pores below 2.0–3.0 nm) govern the sorption behavior at high pressure (4.5 MPa). Consequently, an optimum sorbent exhibiting a high working capacity for high pressure applications, e.g., pressure-swing adsorption units, will require a poorly-developed narrow microporous structure together with a highly-developed wide microporous and small mesoporous network. The appropriate design of the preparation conditions gives rise to carbon materials with an extremely high delivery capacity ∼1388 mg CO2/g between 4.5 MPa and 0.1 MPa. Consequently, this study provides guidelines for the design of carbon materials with an improved ability to remove carbon dioxide from the environment at atmospheric and high pressure.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. 77-92.
Resumo:
Transportation Department, Office of University Research, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"October 27, 1993."
Resumo:
Mode of access: Internet.
Resumo:
Cover title.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographies.
Resumo:
Bibliography: p. 127-135.