967 resultados para medical work
Resumo:
Next to leisure, sport, and household activities, the most common activity resulting in medically consulted injuries and poisonings in the United States is work, with an estimated 4 million workplace related episodes reported in 2008 (U.S. Department of Health and Human Services, 2009). To address the risks inherent to various occupations, risk management programs are typically put in place that include worker training, engineering controls, and personal protective equipment. Recent studies have shown that such interventions alone are insufficient to adequately manage workplace risks, and that the climate in which the workers and safety program exist (known as the "safety climate") is an equally important consideration. The organizational safety climate is so important that many studies have focused on developing means of measuring it in various work settings. While safety climate studies have been reported for several industrial settings, published studies on assessing safety climate in the university work setting are largely absent. Universities are particularly unique workplaces because of the potential exposure to a diversity of agents representing both acute and chronic risks. Universities are also unique because readily detectable health and safety outcomes are relatively rare. The ability to measure safety climate in a work setting with rarely observed systemic outcome measures could serve as a powerful means of measure for the evaluation of safety risk management programs. ^ The goal of this research study was the development of a survey tool to measure safety climate specifically in the university work setting. The use of a standardized tool also allows for comparisons among universities throughout the United States. A specific study objective was accomplished to quantitatively assess safety climate at five universities across the United States. At five universities, 971 participants completed an online questionnaire to measure the safety climate. The average safety climate score across the five universities was 3.92 on a scale of 1 to 5, with 5 indicating very high perceptions of safety at these universities. The two lowest overall dimensions of university safety climate were "acknowledgement of safety performance" and "department and supervisor's safety commitment". The results underscore how the perception of safety climate is significantly influenced at the local level. A second study objective regarding evaluating the reliability and validity of the safety climate questionnaire was accomplished. A third objective fulfilled was to provide executive summaries resulting from the questionnaire to the participating universities' health & safety professionals and collect feedback on usefulness, relevance and perceived accuracy. Overall, the professionals found the survey and results to be very useful, relevant and accurate. Finally, the safety climate questionnaire will be offered to other universities for benchmarking purposes at the annual meeting of a nationally recognized university health and safety organization. The ultimate goal of the project was accomplished and was the creation of a standardized tool that can be used for measuring safety climate in the university work setting and can facilitate meaningful comparisons amongst institutions.^
Resumo:
The Work Limitations Questionnaire (WLQ) is used to determine the amount of work loss and productivity which stem from certain health conditions, including rheumatoid arthritis and cancer. The questionnaire is currently scored using methodology from Classical Test Theory. Item Response Theory, on the other hand, is a theory based on analyzing item responses. This study wanted to determine the validity of using Item Response Theory (IRT), to analyze data from the WLQ. Item responses from 572 employed adults with dysthymia, major depressive disorder (MDD), double depressive disorder (both dysthymia and MDD), rheumatoid arthritis and healthy individuals were used to determine the validity of IRT (Adler et al., 2006).^ PARSCALE, which is IRT software from Scientific Software International, Inc., was used to calculate estimates of the work limitations based on item responses from the WLQ. These estimates, also known as ability estimates, were then correlated with the raw score estimates calculated from the sum of all the items responses. Concurrent validity, which claims a measurement is valid if the correlation between the new measurement and the valid measurement is greater or equal to .90, was used to determine the validity of IRT methodology for the WLQ. Ability estimates from IRT were found to be somewhat highly correlated with the raw scores from the WLQ (above .80). However, the only subscale which had a high enough correlation for IRT to be considered valid was the time management subscale (r = .90). All other subscales, mental/interpersonal, physical, and output, did not produce valid IRT ability estimates.^ An explanation for these lower than expected correlations can be explained by the outliers found in the sample. Also, acquiescent responding (AR) bias, which is caused by the tendency for people to respond the same way to every question on a questionnaire, and the multidimensionality of the questionnaire (the WLQ is composed of four dimensions and thus four different latent variables) probably had a major impact on the IRT estimates. Furthermore, it is possible that the mental/interpersonal dimension violated the monotonocity assumption of IRT causing PARSCALE to fail to run for these estimates. The monotonicity assumption needs to be checked for the mental/interpersonal dimension. Furthermore, the use of multidimensional IRT methods would most likely remove the AR bias and increase the validity of using IRT to analyze data from the WLQ.^
Resumo:
Clinical Research Data Quality Literature Review and Pooled Analysis We present a literature review and secondary analysis of data accuracy in clinical research and related secondary data uses. A total of 93 papers meeting our inclusion criteria were categorized according to the data processing methods. Quantitative data accuracy information was abstracted from the articles and pooled. Our analysis demonstrates that the accuracy associated with data processing methods varies widely, with error rates ranging from 2 errors per 10,000 files to 5019 errors per 10,000 fields. Medical record abstraction was associated with the highest error rates (70–5019 errors per 10,000 fields). Data entered and processed at healthcare facilities had comparable error rates to data processed at central data processing centers. Error rates for data processed with single entry in the presence of on-screen checks were comparable to double entered data. While data processing and cleaning methods may explain a significant amount of the variability in data accuracy, additional factors not resolvable here likely exist. Defining Data Quality for Clinical Research: A Concept Analysis Despite notable previous attempts by experts to define data quality, the concept remains ambiguous and subject to the vagaries of natural language. This current lack of clarity continues to hamper research related to data quality issues. We present a formal concept analysis of data quality, which builds on and synthesizes previously published work. We further posit that discipline-level specificity may be required to achieve the desired definitional clarity. To this end, we combine work from the clinical research domain with findings from the general data quality literature to produce a discipline-specific definition and operationalization for data quality in clinical research. While the results are helpful to clinical research, the methodology of concept analysis may be useful in other fields to clarify data quality attributes and to achieve operational definitions. Medical Record Abstractor’s Perceptions of Factors Impacting the Accuracy of Abstracted Data Medical record abstraction (MRA) is known to be a significant source of data errors in secondary data uses. Factors impacting the accuracy of abstracted data are not reported consistently in the literature. Two Delphi processes were conducted with experienced medical record abstractors to assess abstractor’s perceptions about the factors. The Delphi process identified 9 factors that were not found in the literature, and differed with the literature by 5 factors in the top 25%. The Delphi results refuted seven factors reported in the literature as impacting the quality of abstracted data. The results provide insight into and indicate content validity of a significant number of the factors reported in the literature. Further, the results indicate general consistency between the perceptions of clinical research medical record abstractors and registry and quality improvement abstractors. Distributed Cognition Artifacts on Clinical Research Data Collection Forms Medical record abstraction, a primary mode of data collection in secondary data use, is associated with high error rates. Distributed cognition in medical record abstraction has not been studied as a possible explanation for abstraction errors. We employed the theory of distributed representation and representational analysis to systematically evaluate cognitive demands in medical record abstraction and the extent of external cognitive support employed in a sample of clinical research data collection forms. We show that the cognitive load required for abstraction in 61% of the sampled data elements was high, exceedingly so in 9%. Further, the data collection forms did not support external cognition for the most complex data elements. High working memory demands are a possible explanation for the association of data errors with data elements requiring abstractor interpretation, comparison, mapping or calculation. The representational analysis used here can be used to identify data elements with high cognitive demands.
Resumo:
Background: The failure rate of health information systems is high, partially due to fragmented, incomplete, or incorrect identification and description of specific and critical domain requirements. In order to systematically transform the requirements of work into real information system, an explicit conceptual framework is essential to summarize the work requirements and guide system design. Recently, Butler, Zhang, and colleagues proposed a conceptual framework called Work Domain Ontology (WDO) to formally represent users’ work. This WDO approach has been successfully demonstrated in a real world design project on aircraft scheduling. However, as a top level conceptual framework, this WDO has not defined an explicit and well specified schema (WDOS) , and it does not have a generalizable and operationalized procedure that can be easily applied to develop WDO. Moreover, WDO has not been developed for any concrete healthcare domain. These limitations hinder the utility of WDO in real world information system in general and in health information system in particular. Objective: The objective of this research is to formalize the WDOS, operationalize a procedure to develop WDO, and evaluate WDO approach using Self-Nutrition Management (SNM) work domain. Method: Concept analysis was implemented to formalize WDOS. Focus group interview was conducted to capture concepts in SNM work domain. Ontology engineering methods were adopted to model SNM WDO. Part of the concepts under the primary goal “staying healthy” for SNM were selected and transformed into a semi-structured survey to evaluate the acceptance, explicitness, completeness, consistency, experience dependency of SNM WDO. Result: Four concepts, “goal, operation, object and constraint”, were identified and formally modeled in WDOS with definitions and attributes. 72 SNM WDO concepts under primary goal were selected and transformed into semi-structured survey questions. The evaluation indicated that the major concepts of SNM WDO were accepted by 41 overweight subjects. SNM WDO is generally independent of user domain experience but partially dependent on SNM application experience. 23 of 41 paired concepts had significant correlations. Two concepts were identified as ambiguous concepts. 8 extra concepts were recommended towards the completeness of SNM WDO. Conclusion: The preliminary WDOS is ready with an operationalized procedure. SNM WDO has been developed to guide future SNM application design. This research is an essential step towards Work-Centered Design (WCD).
Resumo:
Background: Obesity is a major health problem in the United States that has reached epidemic proportions. With most U.S adults spending the majority of their waking hours at work, the influence of the workplace environment on obesity is gaining in importance. Recent research implicates worksites as providing an 'obesogenic' environment as they encourage overeating and reduce the opportunity for physical activity. Objective: The aim of this study is to describe the nutrition and physical activity environment of Texas Medical Center (TMC) hospitals participating in the Shape Up Houston evaluation study to develop a scoring system to quantify the environmental data collected using the Environmental Assessment Tool (EAT) survey and to assess the inter-observer reliability of using the EAT survey. Methods: A survey instrument that was adapted from the Environmental Assessment Tool (EAT) developed by Dejoy DM et al in 2008 to measure the hospital environmental support for nutrition and physical activity was used for this study. The inter-observer reliability of using the EAT survey was measured and total percent agreement scores were computed. Most responses on the EAT survey are dichotomous (Yes and No) and these responses were coded with a '0' for a 'no' response and a '1' for a 'yes' response. A summative scoring system was developed to quantify these responses. Each hospital was given a score for each scale and subscale on the EAT survey in addition to a total score. All analyses were conducted using Stata 11 software. Results: High inter-observer reliability is observed using EAT. The percentage agreement scores ranged from 94.4%–100%. Only 2 of the 5 hospitals had a fitness facility onsite and scores for exercise programs and outdoor facilities available for hospital employees ranged from 0–62% and 0–37.5%, respectively. The healthy eating percentage for hospital cafeterias range from 42%–92% across the different hospitals while the healthy vending scores were 0%–40%. The total TMC 'healthy hospital' score was 49%. Conclusion: The EAT survey is a reliable instrument for measuring the physical activity and nutrition support environment of hospital worksites. The study results showed a large variability among the TMC hospitals in the existing physical activity and nutrition support environment. This study proposes cost effective policy changes that can increase environmental support to healthy eating and active living among TMC hospital employees.^
Resumo:
A case-referent study of occupational injuries sustained by 474 workers employed in the heavy equipment machinery industry over a two year period, 1985-1986, was undertaken to examine the association of occupational injuries with non-work-related morbidity. Its specific aim was to evaluate whether employees who experienced a work-related injury had an increased prevalence of non-work-related morbidity, specifically for injuries, cardiovascular disease, mental disorders, all other disease outcomes and total morbidity, compared to employees who did not experience a work-related injury. In order to determine the direction of the relationship, the use of the previous calendar year was employed to assess non-work-related morbidity. A secondary objective of the study was the evaluation of the utility of two existing data sources, workers' compensation and group health insurance claims, and the feasibility of conducting studies based on these data.^ The association of non-work-related non-back injuries and subsequent occupational injury was statistically significant (OR = 1.31, 95% CI 1.02-1.67) for all WC claims. The strength of the association was supported by the elevated odds ratio for non-work-related injuries when severity of occupational injury was assessed by WC claim costs of $100 and greater (OR = 1.47, 1.09--1.97), and by lost workdays (OR = 1.37). Factors that predispose an individual to a non-back injury, such as personal attributes and lifestyle characteristics, also influence that individual's risk of subsequent occupational injury. These factors may be reflected in an employee's reaction to life stressors which influence susceptibility to injury. The role of employee assistance programs as a component of injury prevention strategies is suggested.^ An increased but nonsignificant prevalence of non-work-related injuries, cardiovascular disease, mental disorders, and other morbidity conditions was noted among cases. These findings do not provide support of a causal factor in the etiology of occupational injuries. In contrast to non-back injuries, these conditions are chronic in nature and their influence on risk of occupational injuries uncertain.^ In general, cases tended to file more group health insurance claims for other morbidity than did referents. The association with increased total morbidity was consistent whether worker compensation claims were analyzed by total number of claims, claims with costs of $100 and greater, or by lost workdays. Whether persons who sustained an occupational injury were in fact in poor general health than referents, warrant further investigation. ^
Resumo:
In recent decades, work has become an increasingly common feature of adolescent life in the United States. Once assumed to be an inherently positive experience for youth, school year work has recently been associated with several adverse effects, especially as the number of hours of weekly work increases. The purpose of this dissertation was to describe the impact of school year work on adolescent development in a sample of high school students from rural South Texas, an area where economically-disadvantaged and Hispanic students are heavily represented.^ The first study described the prevalence and work circumstances of 3,565 10$\rm\sp{th}$ and 12$\rm\sp{th}$ grade students who responded to anonymous surveys conducted in regular classrooms. The overall prevalence of current work was 53%. Prevalence differed by grade, college-noncollege-bound status, and parent education. Fifty percent of employed students worked to support consumer spending.^ The second study examined the effects of four levels of work intensity on the academic, behavioral, social, mental and physical health of students. The following negative effects of intense work were reported: (1) decreased engagement in school, satisfaction with leisure time, and hours of weeknight and weekend sleep, and (2) increased health risk behaviors and psychological stress. The negative effects of intense work differed by gender, grade, ethnicity, but not by parent education.^ The third study described the prevalence of injury in the study population. A dose response effect was observed where increasing hours of weekly work were significantly related to work-related injury. The likelihood of being injured while employed in restaurant, farm/ranch, and construction work was greater than the probability of being injured while working in factory/office/skilled, yard, or retail work when compared to babysitting. Cuts, shocks/burns and sprains were the most common injuries in working teens.^ Students, parents, educators, health professionals and policymakers should continue to monitor the number of weekly hours that students work during the school year. ^
Resumo:
This cross-sectional analysis of the data from the Third National Health and Nutrition Examination Survey was conducted to determine the prevalence and determinants of asthma and wheezing among US adults, and to identify the occupations and industries at high risk of developing work-related asthma and work-related wheezing. Separate logistic models were developed for physician-diagnosed asthma (MD asthma), wheezing in the previous 12 months (wheezing), work-related asthma and work-related wheezing. Major risk factors including demographic, socioeconomic, indoor air quality, allergy, and other characteristics were analyzed. The prevalence of lifetime MD asthma was 7.7% and the prevalence of wheezing was 17.2%. Mexican-Americans exhibited the lowest prevalence of MD asthma (4.8%; 95% confidence interval (CI): 4.2, 5.4) when compared to other race-ethnic groups. The prevalence of MD asthma or wheezing did not vary by gender. Multiple logistic regression analysis showed that Mexican-Americans were less likely to develop MD asthma (adjusted odds ratio (ORa) = 0.64, 95%CI: 0.45, 0.90) and wheezing (ORa = 0.55, 95%CI: 0.44, 0.69) when compared to non-Hispanic whites. Low education level, current and past smoking status, pet ownership, lifetime diagnosis of physician-diagnosed hay fever and obesity were all significantly associated with MD asthma and wheezing. No significant effect of indoor air pollutants on asthma and wheezing was observed in this study. The prevalence of work-related asthma was 3.70% (95%CI: 2.88, 4.52) and the prevalence of work-related wheezing was 11.46% (95%CI: 9.87, 13.05). The major occupations identified at risk of developing work-related asthma and wheezing were cleaners; farm and agriculture related occupations; entertainment related occupations; protective service occupations; construction; mechanics and repairers; textile; fabricators and assemblers; other transportation and material moving occupations; freight, stock and material movers; motor vehicle operators; and equipment cleaners. The population attributable risk for work-related asthma and wheeze were 26% and 27% respectively. The major industries identified at risk of work-related asthma and wheeze include entertainment related industry; agriculture, forestry and fishing; construction; electrical machinery; repair services; and lodging places. The population attributable risk for work-related asthma was 36.5% and work-related wheezing was 28.5% for industries. Asthma remains an important public health issue in the US and in the other regions of the world. ^
Resumo:
Managing large medical image collections is an increasingly demanding important issue in many hospitals and other medical settings. A huge amount of this information is daily generated, which requires robust and agile systems. In this paper we present a distributed multi-agent system capable of managing very large medical image datasets. In this approach, agents extract low-level information from images and store them in a data structure implemented in a relational database. The data structure can also store semantic information related to images and particular regions. A distinctive aspect of our work is that a single image can be divided so that the resultant sub-images can be stored and managed separately by different agents to improve performance in data accessing and processing. The system also offers the possibility of applying some region-based operations and filters on images, facilitating image classification. These operations can be performed directly on data structures in the database.
Resumo:
A semi-automatic segmentation algorithm for abdominal aortic aneurysms (AAA), and based on Active Shape Models (ASM) and texture models, is presented in this work. The texture information is provided by a set of four 3D magnetic resonance (MR) images, composed of axial slices of the abdomen, where lumen, wall and intraluminal thrombus (ILT) are visible. Due to the reduced number of images in the MRI training set, an ASM and a custom texture model based on border intensity statistics are constructed. For the same reason the shape is characterized from 35-computed tomography angiography (CTA) images set so the shape variations are better represented. For the evaluation, leave-one-out experiments have been held over the four MRI set.
Resumo:
Background Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large. Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers. One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development. Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don’t provide an clear approach when one wants to shape a new command line tool from a prototype shell script. Results The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. Conclusion In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed.
Resumo:
Semantic interoperability is essential to facilitate efficient collaboration in heterogeneous multi-site healthcare environments. The deployment of a semantic interoperability solution has the potential to enable a wide range of informatics supported applications in clinical care and research both within as ingle healthcare organization and in a network of organizations. At the same time, building and deploying a semantic interoperability solution may require significant effort to carryout data transformation and to harmonize the semantics of the information in the different systems. Our approach to semantic interoperability leverages existing healthcare standards and ontologies, focusing first on specific clinical domains and key applications, and gradually expanding the solution when needed. An important objective of this work is to create a semantic link between clinical research and care environments to enable applications such as streamlining the execution of multi-centric clinical trials, including the identification of eligible patients for the trials. This paper presents an analysis of the suitability of several widely-used medical ontologies in the clinical domain: SNOMED-CT, LOINC, MedDRA, to capture the semantics of the clinical trial eligibility criteria, of the clinical trial data (e.g., Clinical Report Forms), and of the corresponding patient record data that would enable the automatic identification of eligible patients. Next to the coverage provided by the ontologies we evaluate and compare the sizes of the sets of relevant concepts and their relative frequency to estimate the cost of data transformation, of building the necessary semantic mappings, and of extending the solution to new domains. This analysis shows that our approach is both feasible and scalable.
Resumo:
Sex and gender differences influence the health and wellbeing of men and women. Although studies have drawn attention to observed differences between women and men across diseases, remarkably little research has been pursued to systematically investigate these underlying sex differences. Women continue to be underrepresented in clinical trials, and even in studies in which both men and women participate, systematic analysis of data to identify potential sex-based differences is lacking. Standards for reporting of clinical trials have been established to ensure provision of complete, transparent and critical information. An important step in addressing the gender imbalance would be inclusion of a gender perspective in the next Consolidated Standards of Reporting Trials (CONSORT) guideline revision. Uniform Requirements for Manuscripts Submitted to Biomedical Journals, as a set of well-recognized and widely used guidelines for authors and biomedical journals, should similarly emphasize the ethical obligation of authors to present data analyzed by gender as a matter of routine. Journal editors are also promoters of ethical research and adequate standards of reporting, and requirements for inclusion of gender analyses should be integrated into editorial policies as a matter of urgency.