952 resultados para materials science and engineering
Resumo:
Mg-20Zn-8Al-xCe(x=0-2 wt.%) alloys were prepared by metal mould casting method, the effects of Ce on the microstructure and mechanical properties of the alloys were investigated. The results showed that the dendrite as well as gram size were refined by the addition of Ce, and the best refinement was obtained in 1.39% Ce containing alloy.
Resumo:
Microstructures and electrochemical properties of Ti0.26Zr0.07V0.21Mn0.1Ni0.33Mox (x=0,0.025,0.05,0.075, 0.10) electrode alloys have been investigated. The results of XRD analysis show that the alloys are mainly composed of V-based solid solution phase with body centered cubic (bcc) structure and C14 Laves phase with hexagonal structure. The addition of Mo element can imp ove the activation characteristics, maximum discharge capacity and cyclic durability for the electrode alloys
Resumo:
Microstructure and mechanical properties of as-cast and heat-treated Mg-12.3Zn-5.8Y-1.4Al (ZYA1261) alloy were investigated. The phase compositions of the as-cast alloy are alpha-Mg, Mg3YZn6 (I-phase), Mg(3)y(2)Zn(3) (W-phase), Mg12YZn (Z-phase), Mg24Y5, MgZn and a small quantity of Al-containing phase.
Resumo:
The Mg-8.31Gd-1.12Dy-0.38Zr (mass%) alloy was prepared by casting technology, and the microstructure, age hardening behavior and mechanical property have been investigated. It is noted that the alpha-Mg and the different Mg-RE (RE = Gd/Dy) compounds are subsistent in the as-cast and annealed state samples. The age hardening behavior is observed during the investigated temperature range, and the alloy exhibits high Vickers hardness, excellent ultimate tensile strength and yield strength at peak hardness.
Resumo:
Mg-5Al-0.4Mn-xNd (x=0, 1, 2 and 4wt.%) alloys were prepared by metal mould casting method. The microstructures and mechanical properties were investigated. The results demonstrated that Al11Nd3 phase was formed and mainly aggregated along the grain boundaries with the addition of Nd. Meanwhile, the grain sizes were greatly reduced with the increasing Nd content.
Resumo:
Microstructure and mechanical properties of Mg-4.5Zn-xNd (x = 0, 1 and 2, wt%) alloys heat-treated at 603 K for 2 It have been investigated. T-phase (an Mg-Zn-Nd ternary phase) was observed in the Nd containing alloys. The optimal mechanical properties were obtained in the Mg-4.5Zn-1Nd alloy, and the ultimate tensile strength and yield strength were 228 and 79 MPa, respectively. Through comparing with the Mg-4.5Zn alloy, the increments of ultimate tensile strength and yield strength were 51 and 17 MPa.
Resumo:
In order to study the properties of Mg-Al-RE (AE) series alloys, the Mg-4Al-4RE-0.4Mn (RE= La, Ce/La mischmetal or Ce) alloys were developed. Their microstructures, tensile properties and corrosion behavior have been investigated. The results show that the phase compositions of Mg-4Al-4La-0.4Mn alloy consist of alpha-Mg and Al11La3 phases. While two binary Al-RE (RE = Ce/La) phases, Al11RE3 and Al2RE, are formed in Mg-4Al-4Ce/La-0.4Mn alloy, and Al11Ce3 and Al2Ce are formed in Mg-4Al-4Ce-0.4Mn alloy.
Resumo:
The Mg-8Gd-2Y-1Nd-0.3Zn-0.6Zr (wt.%) alloy sheet was prepared by hot extrusion technique, and the structure and mechanical properties of the extruded alloy were investigated. The results show that the alloy in different states is mainly composed of alpha-Mg solid solution and secondary phases of Mg5RE and Mg24RE5 (RE = Gd, Y and Nd). At aging temperatures from 200 degrees C to 300 degrees C the alloy exhibits obvious age-hardening response. Great improvement of mechanical properties is observed in the peak-aged state alloy (aged at 200 degrees C for 60 h), the ultimate tensile strength (sigma(b)), tensile yield strength (sigma(0.2)) and elongation (epsilon) are 376 MPa, 270 MPa and 14.2% at room temperature (RT), and 206 MPa. 153 MPa and 25.4% at 300 degrees C, respectively, the alloy exhibits high thermal stability.
Resumo:
Mg-4Al-4Nd-0.5Zn-0.3Mn alloy was prepared by metal mould casting method. Microstructure, aging behavior, mechanical properties and fracture morphology of the alloy were investigated. The results showed that alpha-Mg, Al-11 Nd-3, Al2Nd and Mg-32(Al,Zn)(49) phases were the main phases of the as-cast alloy. And the long rod-like Al-11 Nd-3 phase was decomposed to granular Al2Nd through T6 heat treatment. The tensile strength was also enhanced by T6 treatment. The yield strength was increased by 17% and 21% at RT and 150 degrees C, respectively. It was mainly because that the precipitates were refined through T6 treatment and this became more benefit to hinder dislocations slipping.
Resumo:
Mg-5Y-3Nd-0.6Zr-xGd (x = 0, 2 and 4 wt.%) alloys were prepared by metal mould casting technique, the structures and mechanical properties were investigated. The alloys were mainly composed of alpha-Mg solid solution and beta-phase. With increasing Gd content, Mg5RE phase increased and the grain was refined. The Mg-5Y-3Nd-2Gd-0.6Zr alloy exhibited highest ultimate tensile strength and Mg-5Y-3Nd-0.6Zr alloy showed highest yield strength at room temperature. With increasing amount of Gd, the thermal resistance was improved. The Mg-5Y-3Nd-4Gd-0.6Zr alloy exhibited highest UTS and YS at 250 degrees C, they were about 1.27 times higher than those of Gd-free alloy, which was mainly attributed to the increase of the beta-phase and Mg5RE strengthening phase.
Resumo:
Microstructures and mechanical properties of the Mg-8Gd-xZn-0.4Zr (x = 0, 1 and 3 wt.%) alloys in the as-cast, as-extruded and extruded-T5 conditions, have been investigated. The peak-aged Mg-8Gd-1Zn-0.4Zr alloy during isothermal ageing at 423 K acquires highest mechanical properties, with the highest ultimate tensile strength and yield tensile strength of 314 and 217 MPa, respectively. Addition of Zn has obvious effect on age hardening responses, especially for 1 wt.% Zn addition. It is due to a uniform distribution of beta' phase which can impede the movement of dislocations. However, addition of 3 wt.% Zn to the Mg-8Gd-0.4Zr alloy leads to a precipitation of Mg3Zn3Gd2 phase (W-phase). This phase is incoherent with interface of the matrix and becomes cores of the fracture in tensile test at room or elevated temperature.
Resumo:
Microstructure and mechanical properties of as-cast and heat-treated Mg–12.3Zn–5.8Y–1.4Al (ZYA1261) alloy were investigated. The phase compositions of the as-cast alloy are -Mg, Mg3YZn6 (I-phase), Mg3Y2Zn3 (W-phase), Mg12YZn (Z-phase), Mg24Y5, MgZn and a small quantity of Al-containing phase. The phase compositions change with various heat treatment conditions. The highest Vickers hardness is obtained in the alloy aged at 200 ◦C for 5 h, the transmission electron microscopy indicated that fine scale Z-phase precipitates in the matrix. The tensile properties of the as-cast and heat-treated alloys were reported.
Resumo:
Mg-20Zn-8Al-xCe(x=0-2 wt.%) alloys were prepared by metal mould casting method, the effects of Ce on the microstructure and mechanical properties of the alloys were investigated. The results showed that the dendrite as well as gram size were refined by the addition of Ce, and the best refinement was obtained in 1.39% Ce containing alloy. The main phases in the as cast alloys were alpha-Mg and tau-Mg-32 (Al, Zn)(49), and Al4Ce phase was found in the alloys contained more than 1.39% Ce. The addition of Ce improved the mechanical properties of the alloys. The strengthening mechanism was attributed to grain refinement and compound reinforced.
Resumo:
Polyfluorene (PF) is a class of typical blue electroluminescent (EL) material, but it exhibits undesired feature in the green spectral region under operation condition. We investigated the spectral properties of different device structures of poly(9,9-dioctylfluorene) (PFO)-based light-emitting diodes, and found that the interaction between cathode and PFO is the main origination of green emission in EL devices. The general method of inserting a buffer layer between the PFO and cathode can decrease the low energy band emission to purify the color and improve the EL performance of devices.
Resumo:
Nanocrystalline 8YSZ (8 mol% yttria stabilized zirconia) bulk samples with grain sizes of 20-30 nm were synthesized by Sol-Gel method and then densified under a high pressure of 4.5 GPa at 1273 K for 10 min. The method led to the densification of 8YSZ to a relative density higher than 92% without grain growth. Fourier transmission Raman spectroscopy suggested that 8YSZ underwent a phase transition from the cubic phase to a phase mixture (tetragonal plus a trace of monoclinic) after the densification, which decreased the electrical conductivity to a certain degree as concluded from the impedance spectroscopy.