935 resultados para low dimensional structures


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ecological dynamics characterizes adaptive behavior as an emergent, self-organizing property of interpersonal interactions in complex social systems. The authors conceptualize and investigate constraints on dynamics of decisions and actions in the multiagent system of team sports. They studied coadaptive interpersonal dynamics in rugby union to model potential control parameter and collective variable relations in attacker–defender dyads. A videogrammetry analysis revealed how some agents generated fluctuations by adapting displacement velocity to create phase transitions and destabilize dyadic subsystems near the try line. Agent interpersonal dynamics exhibited characteristics of chaotic attractors and informational constraints of rugby union boxed dyadic systems into a low dimensional attractor. Data suggests that decisions and actions of agents in sports teams may be characterized as emergent, self-organizing properties, governed by laws of dynamical systems at the ecological scale. Further research needs to generalize this conceptual model of adaptive behavior in performance to other multiagent populations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photo-curable biodegradable macromers were prepared by ring opening polymerization of D,L-lactide (DLLA), (similar to)-caprolactone (CL) and 1,3-trimethylene carbonate (TMC) in the presence of glycerol or sorbitol as initiator and stannous octoate as catalyst, and subsequent methacrylation of the terminal hydroxyl groups. These methacrylated macromers, ranging in molecular weight from approximately 700 to 6000 g/mol, were cross-linked using ultraviolet (UV) light to form biodegradable networks. Homogeneous networks with high gel contents were prepared. One of the resins based on PTMC was used to prepare three-dimensional structures by stereo-lithography using a commercially available apparatus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photo-curable biodegradable macromers were prepared by ring opening polymerization of D,L-lactide (DLLA), ε-caprolactone (CL) and 1,3-trimethylene carbonate (TMC) in the presence of glycerol or sorbitol as initiator and stannous octoate as catalyst, and subsequent methacrylation of the terminal hydroxyl groups. These methacrylated macromers, ranging in molecular weight from approximately 700 to 6000 g/mol, were cross-linked using ultraviolet (UV) light to form biodegradable networks. Homogeneous networks with high gel contents were prepared. One of the resins based on PTMC was used to prepare three-dimensional structures by stereo-lithography using a commercially available apparatus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a framework for performing real-time recursive estimation of landmarks’ visual appearance. Imaging data in its original high dimensional space is probabilistically mapped to a compressed low dimensional space through the definition of likelihood functions. The likelihoods are subsequently fused with prior information using a Bayesian update. This process produces a probabilistic estimate of the low dimensional representation of the landmark visual appearance. The overall filtering provides information complementary to the conventional position estimates which is used to enhance data association. In addition to robotics observations, the filter integrates human observations in the appearance estimates. The appearance tracks as computed by the filter allow landmark classification. The set of labels involved in the classification task is thought of as an observation space where human observations are made by selecting a label. The low dimensional appearance estimates returned by the filter allow for low cost communication in low bandwidth sensor networks. Deployment of the filter in such a network is demonstrated in an outdoor mapping application involving a human operator, a ground and an air vehicle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we present the application of a non-linear dimensionality reduction technique for the learning and probabilistic classification of hyperspectral image. Hyperspectral image spectroscopy is an emerging technique for geological investigations from airborne or orbital sensors. It gives much greater information content per pixel on the image than a normal colour image. This should greatly help with the autonomous identification of natural and manmade objects in unfamiliar terrains for robotic vehicles. However, the large information content of such data makes interpretation of hyperspectral images time-consuming and userintensive. We propose the use of Isomap, a non-linear manifold learning technique combined with Expectation Maximisation in graphical probabilistic models for learning and classification. Isomap is used to find the underlying manifold of the training data. This low dimensional representation of the hyperspectral data facilitates the learning of a Gaussian Mixture Model representation, whose joint probability distributions can be calculated offline. The learnt model is then applied to the hyperspectral image at runtime and data classification can be performed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background subtraction is a fundamental low-level processing task in numerous computer vision applications. The vast majority of algorithms process images on a pixel-by-pixel basis, where an independent decision is made for each pixel. A general limitation of such processing is that rich contextual information is not taken into account. We propose a block-based method capable of dealing with noise, illumination variations, and dynamic backgrounds, while still obtaining smooth contours of foreground objects. Specifically, image sequences are analyzed on an overlapping block-by-block basis. A low-dimensional texture descriptor obtained from each block is passed through an adaptive classifier cascade, where each stage handles a distinct problem. A probabilistic foreground mask generation approach then exploits block overlaps to integrate interim block-level decisions into final pixel-level foreground segmentation. Unlike many pixel-based methods, ad-hoc postprocessing of foreground masks is not required. Experiments on the difficult Wallflower and I2R datasets show that the proposed approach obtains on average better results (both qualitatively and quantitatively) than several prominent methods. We furthermore propose the use of tracking performance as an unbiased approach for assessing the practical usefulness of foreground segmentation methods, and show that the proposed approach leads to considerable improvements in tracking accuracy on the CAVIAR dataset.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ZnO is a wide band-gap semiconductor that has several desirable properties for optoelectronic devices. With its large exciton binding energy of ~60 meV, ZnO is a promising candidate for high stability, room-temperature luminescent and lasing devices [1]. Ultraviolet light-emitting diodes (LEDs) based on ZnO homojunctions had been reported [2,3], while preparing stable p-type ZnO is still a challenge. An alternative way is to use other p-type semiconductors, ether inorganic or organic, to form heterojunctions with the naturally n-type ZnO. The crystal structure of wurtzite ZnO can be described as Zn and O atomic layers alternately stacked along the [0001] direction. Because of the fastest growth rate over the polar (0001) facet, ZnO crystals tend to grow into one-dimensional structures, such as nanowires and nanobelts. Since the first report of ZnO nanobelts in 2001 [4], ZnO nanostructures have been particularly studied for their potential applications in nano-sized devices. Various growth methods have been developed for growing ZnO nanostructures, such as chemical vapor deposition (CVD), Metal-organic CVD (MOCVD), aqueous growth and electrodeposition [5]. Based on the successful synthesis of ZnO nanowires/nanorods, various types of hybrid light-emitting diodes (LEDs) were made. Inorganic p-type semiconductors, such as GaN, Si and SiC, have been used as substrates to grown ZnO nanorods/nanowires for making LEDs. GaN is an ideal material that matches ZnO not only in the crystal structure but also in the energy band levels. However, to prepare Mg-doped p-GaN films via epitaxial growth is still costly. In comparison, the organic semiconductors are inexpensive and have many options to select, for a large variety of p-type polymer or small-molecule semiconductors are now commercially available. The organic semiconductor has the limitation of durability and environmental stability. Many polymer semiconductors are susceptible to damage by humidity or mere exposure to oxygen in the air. Also the carrier mobilities of polymer semiconductors are generally lower than the inorganic semiconductors. However, the combination of polymer semiconductors and ZnO nanostructures opens the way for making flexible LEDs. There are few reports on the hybrid LEDs based on ZnO/polymer heterojunctions, some of them showed the characteristic UV electroluminescence (EL) of ZnO. This chapter reports recent progress of the hybrid LEDs based on ZnO nanowires and other inorganic/organic semiconductors. We provide an overview of the ZnO-nanowire-based hybrid LEDs from the perspectives of the device configuration, growth methods of ZnO nanowires and the selection of p-type semiconductors. Also the device performances and remaining issues are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To recognize faces in video, face appearances have been widely modeled as piece-wise local linear models which linearly approximate the smooth yet non-linear low dimensional face appearance manifolds. The choice of representations of the local models is crucial. Most of the existing methods learn each local model individually meaning that they only anticipate variations within each class. In this work, we propose to represent local models as Gaussian distributions which are learned simultaneously using the heteroscedastic probabilistic linear discriminant analysis (PLDA). Each gallery video is therefore represented as a collection of such distributions. With the PLDA, not only the within-class variations are estimated during the training, the separability between classes is also maximized leading to an improved discrimination. The heteroscedastic PLDA itself is adapted from the standard PLDA to approximate face appearance manifolds more accurately. Instead of assuming a single global within-class covariance, the heteroscedastic PLDA learns different within-class covariances specific to each local model. In the recognition phase, a probe video is matched against gallery samples through the fusion of point-to-model distances. Experiments on the Honda and MoBo datasets have shown the merit of the proposed method which achieves better performance than the state-of-the-art technique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The contextuality of changing attitudes makes them extremely difficult to model. This paper scales up Quantum Decision Theory (QDT) to a social setting, using it to model the manner in which social contexts can interact with the process of low elaboration attitude change. The elements of this extended theory are presented, along with a proof of concept computational implementation in a low dimensional subspace. This model suggests that a society's understanding of social issues will settle down into a static or frozen configuration unless that society consists of a range of individuals with varying personality types and norms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular modelling has become a useful and widely applied tool to investigate separation and diffusion behavior of gas molecules through nano-porous low dimensional carbon materials, including quasi-1D carbon nanotubes and 2D graphene-like carbon allotropes. These simulations provide detailed, molecular level information about the carbon framework structure as well as dynamics and mechanistic insights, i.e. size sieving, quantum sieving, and chemical affinity sieving. In this perspective, we revisit recent advances in this field and summarize separation mechanisms for multicomponent systems from kinetic and equilibrium molecular simulations, elucidating also anomalous diffusion effects induced by the confining pore structure and outlining perspectives for future directions in this field.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Robust descriptor matching across varying lighting conditions is important for vision-based robotics. We present a novel strategy for quantifying the lighting variance of descriptors. The strategy works by utilising recovered low dimensional mappings from Isomap and our measure of the lighting variance of each of these mappings. The resultant metric allows different descriptors to be compared given a dataset and a set of keypoints. We demonstrate that the SIFT descriptor typically has lower lighting variance than other descriptors, although the result depends on semantic class and lighting conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of a SiO2 nanolayer and annealing temperature on the UV/visible room-temperature photoluminescence (PL) from SiNx films synthesized by rf magnetron sputtering is studied. The PL intensity can be maximized when the SiO2 layer is 510 nm thick at 800 °C annealing temperature and only 2 nm at 1000 °C. A compositionstructureproperty analysis reveals that the PL intensity is directly related to both the surface chemical states and the content of the SiO and SiN bonds in the SiNx films. These results are relevant for the development of advanced optoelectronic and photonic emitters and sensors. © 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article introduces a deterministic approach to using low-temperature, thermally non-equilibrium plasmas to synthesize delicate low-dimensional nanostructures of a small number of atoms on plasma exposed surfaces. This approach is based on a set of plasma-related strategies to control elementary surface processes, an area traditionally covered by surface science. Major issues related to balanced delivery and consumption of building units, appropriate choice of process conditions, and account of plasma-related electric fields, electric charges and polarization effects are identified and discussed in the quantum dot nanoarray context. Examples of a suitable plasma-aided nanofabrication facility and specific effects of a plasma-based environment on self-organized growth of size- and position-uniform nanodot arrays are shown. These results suggest a very positive outlook for using low-temperature plasma-based nanotools in high-precision nanofabrication of self-assembled nanostructures and elements of nanodevices, one of the areas of continuously rising demand from academia and industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper outlines the approach taken by the Speech, Audio, Image and Video Technologies laboratory, and the Applied Data Mining Research Group (SAIVT-ADMRG) in the 2014 MediaEval Social Event Detection (SED) task. We participated in the event based clustering subtask (subtask 1), and focused on investigating the incorporation of image features as another source of data to aid clustering. In particular, we developed a descriptor based around the use of super-pixel segmentation, that allows a low dimensional feature that incorporates both colour and texture information to be extracted and used within the popular bag-of-visual-words (BoVW) approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to their unobtrusive nature, vision-based approaches to tracking sports players have been preferred over wearable sensors as they do not require the players to be instrumented for each match. Unfortunately however, due to the heavy occlusion between players, variation in resolution and pose, in addition to fluctuating illumination conditions, tracking players continuously is still an unsolved vision problem. For tasks like clustering and retrieval, having noisy data (i.e. missing and false player detections) is problematic as it generates discontinuities in the input data stream. One method of circumventing this issue is to use an occupancy map, where the field is discretised into a series of zones and a count of player detections in each zone is obtained. A series of frames can then be concatenated to represent a set-play or example of team behaviour. A problem with this approach though is that the compressibility is low (i.e. the variability in the feature space is incredibly high). In this paper, we propose the use of a bilinear spatiotemporal basis model using a role representation to clean-up the noisy detections which operates in a low-dimensional space. To evaluate our approach, we used a fully instrumented field-hockey pitch with 8 fixed high-definition (HD) cameras and evaluated our approach on approximately 200,000 frames of data from a state-of-the-art real-time player detector and compare it to manually labeled data.