894 resultados para lipids metabolites
Resumo:
Enantioenriched and enantiopure thiosulfinates were obtained by asymmetric sulfoxidation of cyclic 1,2-disulfides, using chemical and enzymatic (peroxidase, monooxygenase, dioxygenase) oxidation methods and chiral stationary phase HPLC resolution of racemic thiosulfinates. Enantiomeric excess values, absolute configurations and configurational stabilities of chiral thiosulfinates were determined. Methyl phenyl sulfoxide, benzo[c]thiophene cis-4,5-dihydrodiol and 1,3-dihydrobenzo[c]thiophene derivatives were among unexpected types of metabolites isolated, when acyclic and cyclic 1,2-disulfide were used as substrates for Pseudomonas putida strains. Possible biosynthetic pathways are presented for the production of metabolites from 1,4-dihydrobenzo-2,3-dithiane, including a novel cis-dihydrodiol metabolite that was also derived from benzo[c]thiophene and 1,3-dihydrobenzo[c]thiophene.
Resumo:
Chapter 1 introduces the scope of the work by identifying the clinically relevant prenatal disorders and presently available diagnostic methods. The methodology followed in this work is presented, along with a brief account of the principles of the analytical and statistical tools employed. A thorough description of the state of the art of metabolomics in prenatal research concludes the chapter, highlighting the merit of this novel strategy to identify robust disease biomarkers. The scarce use of maternal and newborn urine in previous reports enlightens the relevance of this work. Chapter 2 presents a description of all the experimental details involved in the work performed, comprising sampling, sample collection and preparation issues, data acquisition protocols and data analysis procedures. The proton Nuclear Magnetic Resonance (NMR) characterization of maternal urine composition in healthy pregnancies is presented in Chapter 3. The urinary metabolic profile characteristic of each pregnancy trimester was defined and a 21-metabolite signature found descriptive of the metabolic adaptations occurring throughout pregnancy. 8 metabolites were found, for the first time to our knowledge, to vary in connection to pregnancy, while known metabolic effects were confirmed. This chapter includes a study of the effects of non-fasting (used in this work) as a possible confounder. Chapter 4 describes the metabolomic study of 2nd trimester maternal urine for the diagnosis of fetal disorders and prediction of later-developing complications. This was achieved by applying a novel variable selection method developed in the context of this work. It was found that fetal malformations (FM) (and, specifically those of the central nervous system, CNS) and chromosomal disorders (CD) (and, specifically, trisomy 21, T21) are accompanied by changes in energy, amino acids, lipids and nucleotides metabolic pathways, with CD causing a further deregulation in sugars metabolism, urea cycle and/or creatinine biosynthesis. Multivariate analysis models´ validation revealed classification rates (CR) of 84% for FM (87%, CNS) and 85% for CD (94%, T21). For later-diagnosed preterm delivery (PTD), preeclampsia (PE) and intrauterine growth restriction (IUGR), it is found that urinary NMR profiles have early predictive value, with CRs ranging from 84% for PTD (11-20 gestational weeks, g.w., prior to diagnosis), 94% for PE (18-24 g.w. pre-diagnosis) and 94% for IUGR (2-22 g.w. pre-diagnosis). This chapter includes results obtained for an ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) study of pre-PTD samples and correlation with NMR data. One possible marker was detected, although its identification was not possible. Chapter 5 relates to the NMR metabolomic study of gestational diabetes mellitus (GDM), establishing a potentially predictive urinary metabolic profile for GDM, 2-21 g.w. prior to diagnosis (CR 83%). Furthermore, the NMR spectrum was shown to carry information on individual phenotypes, able to predict future insulin treatment requirement (CR 94%). Chapter 6 describes results that demonstrate the impact of delivery mode (CR 88%) and gender (CR 76%) on newborn urinary profile. It was also found that newborn prematurity, respiratory depression, large for gestational age growth and malformations induce relevant metabolic perturbations (CR 82-92%), as well as maternal conditions, namely GDM (CR 82%) and maternal psychiatric disorders (CR 91%). Finally, the main conclusions of this thesis are presented in Chapter 7, highlighting the value of maternal or newborn urine metabolomics for pregnancy monitoring and disease prediction, towards the development of new early and non-invasive diagnostic methods.
Resumo:
Tese de doutoramento, Ciências Agrárias (Proteção de Plantas), Faculdade de Ciência e Tecnologia, Universidade do Algarve, 2014
Resumo:
The chapter describes the 10 years research of Anes Laboratory on the interactions of M. tuberculosis with macrophages namely with the actin. modulation by lipids, phagosome maturation and inflammasome activation
Resumo:
Sweroside, a major active iridoid in Swertia pseudochinensis Hara, is recognized as an effective agent in the treatment of liver injury. Based on previous reports, the relatively short half-life (64 min) and poor bioavailability (approximately 0.31%) in rats suggested that not only sweroside itself but also its metabolites could be responsible for the observed hepato-protective effect. However, few studies have been carried out on the metabolism of sweroside. Therefore, the present study aimed at identifying the metabolites of sweroside in rat urine after a single oral dose (100 mg/kg). With ultra-high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC/Q-TOF-MS), the metabolic profile revealed 11 metabolites in rat urine, including phase I, phase II and aglycone-related products. The chemical structures of metabolites were proposed based on accurate mass measurements of protonated or deprotonated molecules and their fragmentation patterns. Our findings showed that the aglycone of sweroside (M05) and its glucuronide conjugate (M06) were principal circulating metabolites in rats. While several other metabolic transformations, occurring via reduction, N-heterocyclization and N-acetylation after deglycosylation, were also observed. Two metabolites (M05 and M06) were isolated from the rat urine for structural elucidation and identifcation of reaction sites. Both M05 and M06 were characterized by 1H, 13C and two-dimensional nuclear magnetic resonance (NMR) spectroscopy. UHPLC/Q-TOF-MS analysis has provided an important analytical platform to gather metabolic profile of sweroside.
Resumo:
Captan and folpet are fungicides largely used in agriculture. They have similar chemical structures, except that folpet has an aromatic ring unlike captan. Their half-lives in blood are very short, given that they are readily broken down to tetrahydrophthalimide (THPI) and phthalimide (PI), respectively. Few authors measured these biomarkers in plasma or urine, and analysis was conducted either by gas chromatography coupled to mass spectrometry or liquid chromatography with UV detection. The objective of this study was thus to develop simple, sensitive and specific liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (LC/APCI-MS/MS) methods to quantify both THPI and PI in human plasma and urine. Briefly, deuterated THPI was added as an internal standard and purification was performed by solid-phase extraction followed by LC/APCI-MS/MS analysis in negative ion mode for both compounds. Validation of the methods was conducted using spiked blank plasma and urine samples at concentrations ranging from 1 to 250 μg/L and 1 to 50 μg/L, respectively, along with samples of volunteers and workers exposed to captan or folpet. The methods showed a good linearity (R (2) > 0.99), recovery (on average 90% for THPI and 75% for PI), intra- and inter-day precision (RSD, <15%) and accuracy (<20%), and stability. The limit of detection was 0.58 μg/L in urine and 1.47 μg/L in plasma for THPI and 1.14 and 2.17 μg/L, respectively, for PI. The described methods proved to be accurate and suitable to determine the toxicokinetics of both metabolites in human plasma and urine.
Resumo:
Catharanthus roseus is the sole biological source of the medicinal compounds vinblastine and vincristine. These chemotherapeutic compounds are produced in the aerial organs of the plant, however they accumulate in small amounts constituting only about 0.0002% of the fresh weight of the leaf. Their limited biological supply and high economical value makes its biosynthesis important to study. Vinblastine and vincristine are dimeric monoterpene indole alkaloids, which consists of two monomers vindoline and catharanthine. The monoterpene indole alkaloids (MIA's) contain a monoterpene moiety which is derived from the iridoid secologanin and an indole moiety tryptamine derived from the amino acid tryptophan. The biosynthesis of the monoterpene indole alkaloids has been localized to at least three cell types namely, the epidermis, the laticifer and the internal phloem assisted parenchyma. Carborundum abrasion (CA) technique was developed to selectively harvest epidermis enriched plant material. This technique can be used to harvest metabolites, protein or RNA. Sequencing of an expressed sequence tagged (EST) library from epidermis enriched mRNA demonstrated that this cell type is active in synthesizing a variety of secondary metabolites namely, flavonoids, lipids, triterpenes and monoterpene indole alkaloids. Virtually all of the known genes involved in monterpene indole alkaloid biosynthesis were sequenced from this library.This EST library is a source for many candidate genes involved in MIA biosynthesis. A contig derived from 12 EST's had high similarity (E'^') to a salicylic acid methyltransferase. Cloning and functional characterization of this gene revealed that it was the carboxyl methyltransferase imethyltransferase (LAMT). In planta characterization of LAMT revealed that it has a 10- fold enrichment in the leaf epidermis as compared to the whole leaf specific activity. Characterization of the recombinant enzyme revealed that vLAMT has a narrow substate specificity as it only accepts loganic acid (100%) and secologanic acid (10%) as substrates. rLAMT has a high Km value for its substrate loganic acid (14.76 mM) and shows strong product inhibition for loganin (Kj 215 |iM). The strong product inhibition and low affinity for its substrate may suggest why the iridoid moiety is the limiting factor in monoterpene indole alkaloid biosynthesis. Metabolite profiling of C. roseus organs shows that secologanin accumulates within these organs and constitutues 0.07- 0.45% of the fresh weight; however loganin does not accumulate within these organs suggesting that the product inhibition of loganin with LAMT is not physiologically relevant. The limiting factor to iridoid and MIA biosynthesis seems to be related to the spatial separation of secologanin and the MIA pathway, although secologanin is synthesized in the epidermis, only 2-5% of the total secologanin is found in the epidermis while the remaining secologanin is found within the leaf body inaccessable to alkaloid biosynthesis. These studies emphasize the biochemical specialization of the epidermis for the production of secondary metabolites. The epidermal cells synthesize metabolites that are sequestered within the plant and metabolites that are secreted to the leaf surface. The secreted metabolites comprise the epidermome, a layer separating the plant from its environment.
Resumo:
As Ca2+ and phosphatidylserine (PS) are known to induce the adhesion of bilayer vesicles and form collapsed multibilayer structures in vitro, it was the aim of this study to examine how that interaction and the resultant structures might be modified by neutral lipid species. X-ray diffraction data from multilamellar systems suggest that phosphatidylcholine (PC) and diacylglycerol (DG) might be in the collapsed phase up to a concentration of -30 mole % and that above this concentration these neutral lipids may modify Ca2+-induced bilayer interactions. Using large unilamellar vesicles and long incubations in excess Ca2+ to ensure equilibration, similar preliminary results were again obtained with PC, and also with phosphatidylethanolamine (PE). A combination of X-ray diffraction, thin-layer chromatography, density gradient centrifugation and freeze-fracture electron microscopy, used in conjunction with an osmotic stress technique, showed that (i) -30 mole % PC can be accomodated in the Ca(DOPS)2 phase; and (ii) higher PC levels modify Ca2+-induced bilayer interactions resulting in single lamellar phases of larger dimension and reduced tendency for REV collapse. Importantly, the data suggest that PC is dehydrated during the rapid collapse process leading. to Ca(DOPS)2 formation and exists with this dehydrated phase. Similar results were obtained using PS isolated from bovine brain. Preliminary studies using two different phosphatidylethanolamine (PE) species indicated accomodation by Ca(DOPS)2 of -25-30 mole 0/0 PE and bulk phase separation, of species favouring a non-bilayer phase, at higher levels. Significantly, all PS/PE vesicles appear to undergo a complete Ca2+-induced collapse, even with contents of up to 90 mole % PE. These data suggest that PE may have an important role in fusion mechanisms in vivo. In sum the data lend both structural and stoichiometric evidence for th~ existence of laterally segregated neutral lipid molecules within the same bilayers as PS domains exposed to Ca2+.
Resumo:
Phosphoenolpyruvate carboxylase (PEPC) and malic enzyme activities in soluble protein extracts of Avena coleoptiles were investigated to determine whether their kinetics were consistent with a role in cytosol pH regulation. Malic enzyme activity was specific for NADP+ and Mn2+. Maximal labelled product formation from [14C]-substrates required the presence of all coenzymes, cofactors and substrates. Plots of rate versus malate concentration, and linear transformations there- 2 of, indicated typical Michaelis-Menten kinetics at non-saturating malate levels and substrate inhibition at higher malate levels. pH increases between 6.5 and 7.25 increased near-optimal activity, decreased the degree of substrate inhibition and the Kmapp(Mn2+) but did not affect the Vmax or Kmapp(malate). Transformed data of PEPC activity demonstrated non-linear plots indicative of non-Michaelian kinetics. pH increases between 7.0 and 7.6 increased the Vmax and decreased the Km app (Mg2+) but did not affect the Kmapp(PEP). Various carboxylic acids and phosphorylated sugars inhibited PEPC and malic enzyme activities, and these effects decreased with pH increases. Metabolite inhibited malic enzyme activity was non-competitive and resulted mainly from Mn2+ chelation. In contrast, metabolite inhibited PEPC activity was unique for each compound tested, being variously dependent on the PEP concentration and the pH employed. These results indicate that fluctuations in pH and metabolite levels affect PEPC and malic enzyme activities similarly and that 3 the in vitro properties of PEPC are consistent with its proposed role in a pH-stat, whereas the in vitro properties of the malic enzyme cannot be interpreted in terms of a role in pH regulation.
Resumo:
The aggressive mushroom competitor, Trichoderma harzianum biotype Th4, produces volatile antifungal secondary metabolites both in culture and during the disease cycle in compost. Th4 cultures produced one such compound only when cultured in the presence of Agaricus bisporus mycelium or liquid medium made from compost colonised with A. bisporus. This compound has TLC and UVabsorption and characteristics indicating that it belongs to a class of pyrone antibiotics characterised from other T. harzianum biotypes. UV absorption spectra indicated this compound was not 6-pentyl-2H-pyran-one (6PAP), the volatile antifungal metabolite widely described in Th1. Furthermore, this compound was not produced by Th1 under any culture conditions. Mycelial growth of A. bisporus, Botrytis cinerea and Sclerotium cepivorum was inhibited in the presence of this compound through volatility , diffusion and direct application. This indicates that Th4 produces novel, volatile, antifungal metabolites in the presence of A. bisporus that are likely involved in green mould disease of mushroom crops.
Resumo:
Trichoderma spp are effective competitors against other fungi because they are mycoparasitic and produce hydrolytic enzymes and secondary metabolites that inhibit the growth of their competitors. Inhibitory compounds produced by Trichoderma aggressivum, the causative agent of green mold disease, are more toxic to the hybrid off-white strains of Agaricus bisporus than the commercial brown strains, consistent with the commercial brown strain’s increased resistance to the disease. This project looked at the response of hybrid off-white and commercial brown strains of A. bisporus to the presence of T. aggressivum metabolites with regard to three A. bisporus genes: laccase 1, laccase 2, and manganese peroxidase. The addition of T. aggressivum toxic metabolites had no significant effect on MnP or lcc1 transcript abundance. Alternatively, laccase 2 appears to be involved in resistance to T. aggressivum because the presence of T. aggressivum metabolites results in higher lcc2 transcript abundance and laccase activity, especially in the commercial brown strain. The difference in laccase expression and activity between A. bisporus strains was not a result of regulatory or coding sequence differences. Alteration of laccase transcription by RNAi resulted in transformants with variable levels of laccase transcript abundance. Transformants with a low number of lcc transcripts were very sensitive to T. aggressivum toxins, while those with a high number of lcc transcripts had increased resistance. These results indicated that laccase activity, in particular that encoded by lcc2, serves as a defense response of A. bisporus to T. aggressivum toxins and contributes to green mold disease resistance in commercial brown strains.
Resumo:
Consuming low-fat milk (LFM) after resistance training leads to improvements in body composition. Habitual aerobic exercise and dairy intake are relatively easy lifestyle modifications that could benefit a population at risk for becoming obese. Thus, the purpose of this study was to investigate combining increased LFM intake with endurance exercise on body composition, blood-lipid profile and metabolic markers. 40 young males were randomized into four groups: one ingesting 750mL LFM immediately post-exercise, the other 6hrs post-exercise; and two isocaloric carbohydrate groups ingesting at the two different times. Participants completed a 12 week endurance-training program (cycling 1 hour/day at ~60%VO2peak, 5 days/week). 23 participants completed the study. Increases in lean mass (p < 0.05), and decreases in anti-inflammatory marker adiponectin (p < 0.05) were seen in all groups. No other significant changes were observed. Future analyses should focus on longer duration exercise and include a larger sample.
Resumo:
La digestion anaérobie est un processus biologique dans lequel un consortium microbien complexe fonctionnant en absence d’oxygène transforme la matière organique en biogaz, principalement en méthane et en dioxyde de carbone. Parmi les substrats organiques, les lipides sont les plus productifs de méthane par rapport aux glucides et aux protéines; mais leur dégradation est très difficile, en raison de leur hydrolyse qui peut être l’étape limitante. Les algues peuvent être une source importante pour la production de méthane à cause de leur contenu en lipides potentiellement élevé. L’objectif de cette étude était, par conséquent, d’évaluer la production en méthane des microalgues en utilisant la technique du BMP (Biochemical méthane Potential) et d’identifier les limites de biodégradion des lipides dans la digestion anaérobie. Le plan expérimental a été divisé en plusieurs étapes: 1) Comparer le potentiel énergétique en méthane des macroalgues par rapport aux microalgues. 2) Faire le criblage de différentes espèces de microalgues d’eau douce et marines afin de comparer leur potentiel en méthane. 3) Déterminer l'impact des prétraitements sur la production de méthane de quelques microalgues ciblées. 4) Identifier les limites de biodégradation des lipides algaux dans la digestion anaérobie, en étudiant les étapes limitantes de la cinétique des lipides et de chacun des acides gras à longues chaines. Les résultats ont montré que les microalgues produisent plus de méthane que les macroalgues. Les BMP des microalgues d'eau douce et marines n'ont montré aucune différence en termes de rendement en méthane. Les résultats des prétraitements ont montré que le prétraitement thermique (microonde) semblait être plus efficace que le prétraitement chimique (alcalin). Les tests de contrôle du BMP faits sur l'huile de palme, l’huile de macadamia et l'huile de poisson ont montré que l'hydrolyse des huiles en glycérol et en acides gras à longues chaines n'était pas l'étape limitante dans la production de méthane. L'ajout de gras dans les échantillons de Phaeodactylum dégraissée a augmenté le rendement de méthane et cette augmentation a été corrélée à la quantité de matières grasses ajoutées.
Resumo:
La méthylation de l'ADN est l'une des modifications épigénétiques au niveau des îlots CpG. Cette modification épigénétique catalysée par les ADN méthyltransférases (DNMTs) consiste en la méthylation du carbone 5' d’une cytosine ce qui aboutit à la formation de 5-méthylcytosine. La méthylation de l'ADN est clairement impliquée dans l'inactivation des gènes et dans l'empreinte génétique. Elle est modulée par la nutrition, en particulier par les donneurs de méthyle et par une restriction protéique. Ces modifications épigénétiques persistent plus tard dans la vie et conduisent au développement de nombreuses pathologies telles que le syndrome métabolique et le diabète de type 2. En fait, de nombreux gènes clés subissent une modification de leur état de méthylation en présence des composants du syndrome métabolique. Cela montre que la méthylation de l'ADN est un processus important dans l'étiologie du syndrome métabolique. Le premier travail de ce doctorat a porté sur la rédaction d’un article de revue qui a examiné le cadre central du syndrome métabolique et analyser le rôle des modifications épigénétiques susceptibles d'influer sur l'apparition du stress oxydant et des complications cardiométaboliques. D’autre part, les cellules intestinales Caco-2/15, qui ont la capacité de se différencier et d’acquérir les caractéristiques physiologiques de l'intestin grêle, ont été utilisées et traitées avec du Fer-Ascorbate pour induire un stress oxydant. Le Fer-Ascorbate a induit une augmentation significative de l’inflammation et de la peroxydation des lipides (malondialdehyde) ainsi que des altérations de de la défense antioxydante (SOD2 et GPx) accompagnées de modifications épigénétiques. De plus, la pré-incubation des cellules avec de la 5-aza-2'-désoxycytidine, un agent de déméthylation et/ou l’antioxydant Trolox a normalisé la défense antioxydante, réduit la peroxydation des lipides et prévenu l'inflammation. Ce premier travail a démontré que les modifications du redox et l’inflammation induites par le Fer-Ascorbate peuvent impliquer des changements épigénétiques, plus particulièrement des changements dans la méthylation de l’ADN. Pour mieux définir l’impact du stress oxydant au niveau nutritionnel, des cochons d’Inde âgés de trois jours ont été séparés en trois groupes : 1) Témoins: alimentation régulière; 2) Nutrition parentérale (NP) 3) H2O2 : Témoins + 350 uM H2O2. Après quatre jours, pour un groupe, les perfusions ont été stoppées et les animaux sacrifiés pour la collecte des foies. Pour l’autre groupe d’animaux, les perfusions ont été arrêtées et les animaux ont eu un accès libre à une alimentation régulière jusqu'à la fin de l’étude, huit semaines plus tard où ils ont été sacrifiés pour la collecte des foies. Ceci a démontré qu’à une semaine de vie, l'activité DNMT et les niveaux de 5'-méthyl-2'-désoxycytidine étaient inférieurs pour les groupes NP et H2O2 par rapport aux témoins. A neuf semaines de vie, l’activité DNMT est restée basse pour le groupe NP alors que les niveaux de 5'-méthyl-2'-désoxycytidine étaient plus faibles pour les groupes NP et H2O2 par rapport aux témoins. Ce travail a démontré que l'administration de NP ou de H2O2, tôt dans la vie, induit une hypométhylation de l'ADN persistante en raison d'une inhibition de l'activité DNMT. Finalement, des souris ayant reçu une diète riche en gras et en sucre (HFHS) ont été utilisées comme modèle in vivo de syndrome métabolique. Les souris ont été nourris soit avec un régime standard chow (témoins), soit avec une diète riche en gras et en sucre (HFHS) ou avec une diète HFHS en combinaison avec du GFT505 (30 mg/kg), un double agoniste de PPARα et de PPARδ, pendant 12 semaines. La diète HFHS était efficace à induire un syndrome métabolique étant donnée l’augmentation du poids corporel, du poids hépatique, des adiposités viscérales et sous-cutanées, de l’insensibilité à l’insuline, des lipides plasmatiques et hépatiques, du stress oxydant et de l’inflammation au niveau du foie. Ces perturbations étaient accompagnées d’une déficience dans l’expression des gènes hépatiques PPARα et PPARγ concomitant avec une hyperméthylation de leurs promoteurs respectifs. L’ajout de GFT505 à la diète HFHS a empêché la plupart des effets cardiométaboliques induits par la diète HFHS via la modulation négative de l’hyperméthylation des promoteurs, résultant en l’augmentation de l’expression des gènes hépatiques PPARα et PPARγ. En conclusion, GFT505 exerce des effets métaboliques positifs en améliorant le syndrome métabolique induit par l'alimentation HFHS via des modifications épigénétiques des gènes PPARs. Ensemble, les travaux de cette thèse ont démontré que le stress oxydant provenant de la nutrition induit d’importants changements épigénétiques pouvant conduire au développement du syndrome métabolique. La nutrition apparait donc comme un facteur crucial dans la prévention de la reprogrammation fœtale et du développement du syndrome métabolique. Puisque les mécanismes suggèrent que le stress oxydant agit principalement sur les métabolites du cycle de la méthionine pour altérer l’épigénétique, une supplémentation en ces molécules ainsi qu’en antioxydants permettrait de restaurer l’équilibre redox et épigénétique.