924 resultados para linear feedback control
Resumo:
This paper deals with a third order shear deformation finite element model wich is applied on the active resonance control thin plate/shell laminated structures with integrated piezoelectric layers of patches, acting as sensors and actuators. The finite element model is a single layer tringular nonconforming plate/shell element with 24 degrees of freedom for he generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, wich are surface bonded on the laminated. The newwork method is considered to calculate the dynamic response of the laminated sructures forced to vibrate in the first natural frequency. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers. The model is applied to the solution of one illustrative case, and the results are presented and discussed.
Resumo:
This paper deals with a finite element formulation based on the classical laminated plate theory, for active control of thin plate laminated structures with integrated piezoelectric layers, acting as sensors and actuators. The control is initialized through a previous optimization of the core of the laminated structure, in order to minimize the vibration amplitude. Also the optimization of the patches position is performed to maximize the piezoelectric actuator efficiency. The genetic algorithm is used for these purposes. The finite element model is a single layer triangular plate/shell element with 24 degrees of freedom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, which can be surface bonded or embedded on the laminate. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers. To calculate the dynamic response of the laminated structures the Newmark method is considered. The model is applied in the solution of an illustrative case and the results are presented and discussed.
Resumo:
A finite element formulation for active vibration control of thin plate laminated structures with integrated piezoelectric layers, acting as sensors and actuators in presented. The finite element model is a nonconforming single layer triangular plate/shell element with 18 degrees of freedom for the generalized displacements and one electrical potential degree of freedom for each piezoelectric element layer, and is based on the kirchhoff classical laminated theory. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers, and Newmark method is used to calculate yhe dynamic response of the laminated structures. The model is applied in the solution of several illustrative cases, and the results are presented and discussed.
Resumo:
This paper deals with a finite formulation baserd on the classical laminated plate tehory, for active control of thin late laminated structures with integrated piezoelectric layers, acting as sensors and actuators. The control is initialized through a previuos optimization of the core of the laminated structure, in order to minimize the vibration amplitude. Also the optimization of the patches position in performed to maximize the piezoelectric actuator efficiency. the simulating annealing mthod is used for these purposes. The finite element model is a single layer triangular nonconforming plate/shell element with 18 degrees of fredom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, wich can be surface bonded or imbedded on the laminate. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorirhm is used, coupling the sensor and active piezoelectric layers. To calculate the dynamic response of the laminated structures the Newmark method is considered. The model is applied in the solution of an illustrative case and the results are presented and discussed.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Many approaches to force control have assumed the ability to command torques accurately. Concurrently, much research has been devoted to developing accurate torque actuation schemes. Often, torque sensors have been utilized to close a feedback loop around output torque. In this paper, the torque control of a brushless motor is investigated through: the design, construction, and utilization of a joint torque sensor for feedback control; and the development and implementation of techniques for phase current based feedforeward torque control. It is concluded that simply closing a torque loop is no longer necessarily the best alternative since reasonably accurate current based torque control is achievable.
Resumo:
The H∞ synchronization problem of the master and slave structure of a second-order neutral master-slave systems with time-varying delays is presented in this paper. Delay-dependent sufficient conditions for the design of a delayed output-feedback control are given by Lyapunov-Krasovskii method in terms of a linear matrix inequality (LMI). A controller, which guarantees H∞ synchronization of the master and slave structure using some free weighting matrices, is then developed. A numerical example has been given to show the effectiveness of the method
Resumo:
Current limitations in piezoelectric and electrostatic transducers are discussed. A force-feedback electrostatic transducer capable of operating at bandwidths up to 20 kHz is described. Advantages of the proposed design are a linearised operation which simplifies the feedback control aspects and robustness of the performance characteristics to environmental perturbations. Applications in nanotechnology, optical sciences and acoustics are discussed.
Resumo:
A feedback system for control or electronics should have high loop gain, so that its output is close to its desired state, and the effects of changes in the system and of disturbances are minimised. Bode proposed a method for single loop feedback systems to obtain the maximum available feedback, defined as the largest possible loop gain over a bandwidth pertinent to the system, with appropriate gain and phase margins. The method uses asymptotic approximations, and this paper describes some novel adjustments to the asymptotes, so that the final system often exceeds the maximum available feedback. The implementation of the method requires the cascading of a series of lead-lag element. This paper describes a new way to determine how many elements should be used.
Resumo:
A parallel structure is suggested for feedback control systems. Such a technique can be applied to either single or multi-sensor environments and is ideally suited for parallel processor implementation. The control input actually applied is based on a weighted summation of the different parallel controller values, the weightings being either fixed values or chosen by an adaptive decision-making mechanism. The effect of different controller combinations is a field now open to study.
Resumo:
In this paper the use of neural networks for the control of dynamical systems is considered. Both identification and feedback control aspects are discussed as well as the types of system for which neural networks can provide a useful technique. Multi-layer Perceptron and Radial Basis function neural network types are looked at, with an emphasis on the latter. It is shown how basis function centre selection is a critical part of the implementation process and that multivariate clustering algorithms can be an extremely useful tool for finding centres.
Resumo:
A number of commonly encountered simple neural network types are discussed, with particular attention being paid to their applicability in automation and control when applied to food processing. In the first instance n-tuple networks are considered, these being particularly useful for high speed production checking operations. Subsequently backpropagation networks are discussed, these being useful both in a more familiar feedback control arrangement and also for such things as recipe prediction.
Resumo:
Some necessary and sufficient conditions for closed-loop eigenstructure assignment by output feedback in time-invariant linear multivariable control systems are presented. A simple condition on a square matrix necessary and sufficient for it to be the closed-loop plant matrix of a given system with some output feedback is the basis of the paper. Some known results on entire eigenstructure assignment are deduced from this. The concept of an inner inverse of a matrix is employed to obtain a condition concerning the assignment of an eigenstructure consisting of the eigenvalues and a mixture of left and right eigenvectors.
Resumo:
Previously the author described how control engineering can be introduced using little mathematics in a first year course, the aim being to make the subject accessible across different degrees. One reaction to this was that it was a good idea, but there was not space to include it in the curriculum where, typically control engineering is not introduced until the second year. This paper describes how the author has used a review of the first year teaching to develop a module in which feedback, control and electronics are integrated coherently. This is beneficial as concepts in control and electronics mutually reinforce each other. This has been achieved during a reduction in the available time for teaching the material. This paper describes the strategy used to successfully develop the module, the integrated module and positive student reaction.
Resumo:
This work deals with an on-line control strategy based on Robust Model Predictive Control (RMPC) technique applied in a real coupled tanks system. This process consists of two coupled tanks and a pump to feed the liquid to the system. The control objective (regulator problem) is to keep the tanks levels in the considered operation point even in the presence of disturbance. The RMPC is a technique that allows explicit incorporation of the plant uncertainty in the problem formulation. The goal is to design, at each time step, a state-feedback control law that minimizes a 'worst-case' infinite horizon objective function, subject to constraint in the control. The existence of a feedback control law satisfying the input constraints is reduced to a convex optimization over linear matrix inequalities (LMIs) problem. It is shown in this work that for the plant uncertainty described by the polytope, the feasible receding horizon state feedback control design is robustly stabilizing. The software implementation of the RMPC is made using Scilab, and its communication with Coupled Tanks Systems is done through the OLE for Process Control (OPC) industrial protocol